Astronomy and Planetary Science

Dr I-Ming Chou – Building Containers for Extreme Geological Fluids

Dr I-Ming Chou – Building Containers for Extreme Geological Fluids

Earth’s crust plays host to many different fluids, which are often pressurised and heated to extreme degrees by the geological processes taking place around them. Harnessing his previous experience at the US Geological Survey, Dr I-Ming Chou at the Chinese Academy of Sciences designs vessels suitable for containing these fluids, while also enabling researchers to easily measure them in the lab using advanced optical techniques. Through their work, Dr Chou’s team has presented cutting-edge designs based on fused silica capillary tubes. Their designs could soon transform geologists’ understanding of the chemical processes taking place far below us.

Dr Edward Schwieterman – Developing a Guidebook to Search for Life Beyond Earth

Dr Edward Schwieterman – Developing a Guidebook to Search for Life Beyond Earth

Are we alone in the universe? Searching for life beyond our Solar System is one of the most ambitious efforts humans have ever undertaken. Because we do not have the ability to travel to distant exoplanets, scientists must rely on indirect clues that could help us find extraterrestrial life. Dr Edward Schwieterman and his colleagues at the University of California, Riverside, have been developing advanced methods to determine the habitability of planets and detect the elusive signs of life from afar.

Dr Giovanni Fazio – The Spitzer Space Telescope: Exploring the Infrared Universe

Dr Giovanni Fazio – The Spitzer Space Telescope: Exploring the Infrared Universe

From 2003 until 2020, NASA’s Spitzer Space Telescope provided an unprecedented view of our universe in infrared. One of the most important instruments aboard the telescope was the Infrared Array Camera (IRAC), which was designed and operated by a team led by Dr Giovanni Fazio at the Center for Astrophysics | Harvard & Smithsonian. Across its 16-year run, the camera gave crucial insights into processes ranging from galaxy formation in the ancient universe, to emissions from supermassive black holes. The discoveries enabled by Dr Fazio and his colleagues could soon be instrumental in aiding observations from even more advanced telescopes.

Dr Manfred Vogt – Measuring Meteorites to Reveal the Origins of the Earth

Dr Manfred Vogt – Measuring Meteorites to Reveal the Origins of the Earth

The planet we call home has a 4.5-billion-year history, but humans have only been around for a tiny fraction of this time. To discover what happened before life arose on Earth, and even before Earth’s formation, scientists can study objects sent from space – from icy comets and rocky asteroids to tiny particles of interstellar dust. Early in Earth’s history, primordial gases became trapped deep in the planet’s interior. By determining how they were trapped and where they might be stored, Dr Manfred Vogt and his research group at the Ruprecht-Karls-University of Heidelberg are shedding new light on Earth’s origins.

Dr Anthony Toigo – Revealing the Trigger for Martian Avalanches

Dr Anthony Toigo – Revealing the Trigger for Martian Avalanches

For years, scientists have been puzzled by the appearance of dark streaks appearing on Martian hillsides. The linear features look like water flows – and if water is present, they could be harbouring life on Mars. However, the freezing conditions on Mars mean that liquid water flows are unlikely. Previous theories suggest the flows could be dust avalanches, but this doesn’t explain why they only appear in the Martian summer. Dr Anthony Toigo and his colleagues at Johns Hopkins University Applied Physics Laboratory, NASA Goddard Space Flight Center, and the University of Colorado – Boulder, have modelled weather conditions near the Martian surface and recreated the Martian atmosphere in a laboratory. By doing so, they could examine how Martian dust and surface soils respond to the changing seasons on the red planet.

Dr Nick Gnedin – The CROC Project: Understanding Reionisation in the Early Universe

Dr Nick Gnedin – The CROC Project: Understanding Reionisation in the Early Universe

Hundreds of millions of years after the Big Bang, charged, ‘ionised’ particles not seen since the earliest ages of the universe began to re-emerge. Named ‘reionisation’, this event was crucially important in the history of our universe – but because it occurred so far back in the past, telescope observations can only offer astronomers limited clues about how it unfolded. In his research, Dr Nick Gnedin at the Fermi National Accelerator Laboratory uses advanced computer simulations to study reionisation. His team’s project, named ‘Cosmic Reionization On Computers’, or CROC, now offers a key resource to researchers studying this distant period.

Dr Tom Jones – Simulating Flows Between Clustered Galaxies

Dr Tom Jones – Simulating Flows Between Clustered Galaxies

The spaces in between galaxies may be unimaginably vast, but within galactic clusters, they are far from empty. Rather, these expanses are home to a wide range of interplaying, often violent plasma dynamics. In his research, Dr Tom Jones at the University of Minnesota plans to use cutting-edge computer techniques to simulate these processes – shedding new light on physical properties that have eluded astronomers so far. His team’s research will not only give crucial insights into some of the largest structures in the known universe, but will also capture the public imagination, and inspire a diverse new generation of astronomers.

James H. Shirley – Uncovering the Trigger for Mars’ Global Dust Storms

James H. Shirley – Uncovering the Trigger for Mars’ Global Dust Storms

Enshrouding the Martian surface with thick clouds of dust, the Red Planet’s unique global dust storms have long mystified astronomers and planetary scientists. James Shirley, at NASA’s Jet Propulsion Laboratory, has shown through his research that the occurrence of these global storms is strongly linked to the changes in Mars’ motion about the gravitational centre of the solar system. Already boasting strong observational evidence, his results could not only improve our understanding of the Mars atmosphere – they may also lead to a better understanding of turbulent weather patterns on Earth.

Dr Hatam Guliyev | Dr Rashid Javanshir – The Nonlinear Earth: Correcting a Long-Outdated Theory

Dr Hatam Guliyev | Dr Rashid Javanshir – The Nonlinear Earth: Correcting a Long-Outdated Theory

Although the theories researchers use to describe the structural properties of Earth’s interior have now persisted to decades, the assumptions they make are far from realistic. Through their research, Dr Hatam Guliyev and Dr Rashid Javanshir, both of the National Academy of Sciences in Azerbaijan, have integrated concepts from both mechanics and Earth sciences to produce ground-breaking new theories about Earth’s ‘nonlinear’ properties. Their discoveries have yet to be widely accepted by the scientific community, but through concerted collaboration efforts, they hope that their ‘non-classically linearised’ approach could soon become a key aspect of geophysical research.

Dr Gerhard Haerendel – Exploring the Vibrant Dynamics of Near-Earth Space

Dr Gerhard Haerendel – Exploring the Vibrant Dynamics of Near-Earth Space

The region of space in which Earth’s magnetic field interacts with flowing charged particles is home to a rich array of physical processes – but studying them is no easy task. Through a career spanning over 50 years, Dr Gerhard Haerendel at the Max Planck Institute for extraterrestrial physics has carried out world-leading research into these processes. His discoveries have now led to ground-breaking insights in the field of plasma physics – including explanations of striking arcs in the aurora, the discovery of characteristic prominences on the Sun’s surface, and analysis of artificial comets seeded directly into space.

Dr Charles Smith – Space Weather Underground: A Magnetometer Array with Educational Opportunities

Dr Charles Smith – Space Weather Underground: A Magnetometer Array with Educational Opportunities

The complex processes of Earth’s ionosphere may occur far above the planet’s surface, but when monitored from numerous locations at sufficient distances, they can be measured using inexpensive equipment on the ground. Dr Charles Smith at the University of New Hampshire has assembled an extensive team to do just that, with participants ranging from space scientists with decades of experience, to high school students considering futures in science and engineering. Named Space Weather Underground, the project could soon make extensive data on ionosphere dynamics available to scientists and the public alike.

Dr Joe Huba – Plasma Bubbles after Sunset: Simulating Instabilities in the Ionosphere

Dr Joe Huba – Plasma Bubbles after Sunset: Simulating Instabilities in the Ionosphere

Many kilometres above the Earth’s equatorial region, something strange occurs for several hours in the late evening: vast bubbles of plasma form in the upper atmosphere, which quickly rise upwards into space. Dr Joe Huba at Syntek Technologies in Virginia aims to gain a better understanding of this complex process, by recreating it through computer simulations. His team’s work is providing researchers with a more complete understanding of Earth’s atmosphere, and could also provide critical insights for satellite systems that communicate using radio waves, as well as global positioning systems.

The Virgo Interferometer

The Virgo Interferometer

Located near the city of Pisa in Italy, the Virgo interferometer is the most sensitive gravitational wave detector in Europe. The latest version of the interferometer – the Advanced Virgo – was built in 2012, and has been operational since 2017. Virgo is part of a scientific collaboration of more than 100 institutes from 10 European countries. By detecting and analysing gravitational wave signals, which arise from collisions of black holes or neutron stars millions of lightyears away, Virgo’s goal is to advance our understanding of fundamental physics, astronomy and cosmology. In this exclusive interview, we speak with the spokesperson of the Virgo Collaboration, Dr Jo van den Brand, who discusses Virgo’s achievements, plans for the future, and the fascinating field of gravitational wave astronomy.

Dr Shantanu Basu – Exploring the Formation of Gravitationally Bound Objects Across the Universe

Dr Shantanu Basu – Exploring the Formation of Gravitationally Bound Objects Across the Universe

From brown dwarfs to supermassive black holes, many of the strangest objects known to astronomers are formed as material collapses in on itself under its own gravity. Through a combination of physical theories and the latest computer simulations, Dr Shantanu Basu at the University of Western Ontario in Canada is offering intriguing new insights into how these structures originate. His theories could help astronomers to understand the very earliest stages of bodies ranging from those too small to become stars, to the vast, all-devouring heavyweights that reside in the centres of galaxies.

Dr Robert Ebert – Pinpointing the Physics of Energetic Storm Particles Observed in Near Earth Orbit

Dr Robert Ebert – Pinpointing the Physics of Energetic Storm Particles Observed in Near Earth Orbit

When the Sun’s surrounding corona erupts, colossal streams of charged particles are ejected out into interplanetary space, and go on to interact with the material that resides there. Dr Robert Ebert at the Southwest Research Institute and his colleagues combine observations from spacecraft with the latest computer models to uncover the mysteries of these interactions. Their research focuses on advancing astronomers’ understanding of the highly energetic processes that play out in the void that comprises over 99% of the Solar System’s volume.

Dr Philip Myers – A Family Affair: Exploring Early Star Formation

Dr Philip Myers – A Family Affair: Exploring Early Star Formation

We know much about fully-formed stars, such as our Sun, but the very earliest processes of star formation are still a mysterious area of astrophysical research. The original idea that a single new-born star (or ‘protostar’) forms within a single molecular cloud core has been dispelled by the discovery of new-born pairs, triplets, or even larger groups of protostars in cores. Dr Philip Myers of the Center for Astrophysics | Harvard and Smithsonian has been observing and interpreting protostar formation for many years using a range of sophisticated telescopes and theoretical models.

Dr Shadia Habbal | Dr Miloslav Druckmüller – Hiding the Sun: Coronal Discoveries during Total Solar Eclipses

Dr Shadia Habbal | Dr Miloslav Druckmüller – Hiding the Sun: Coronal Discoveries during Total Solar Eclipses

Extending far beyond its surface, the Sun’s corona hosts a variety of intricate structures and behaviours. Yet because the Sun is so much brighter than its surrounding environment, these properties can be incredibly hard to spot under typical observing conditions. In their research, Dr Shadia Habbal at the University of Hawaii and Dr Miloslav Druckmüller at Brno University make use of one of the most well-known astronomical phenomena to solve this issue: total solar eclipses.

Dr Robert Winglee – High Velocity Impacts: A New Way to Collect Samples from Space

Dr Robert Winglee – High Velocity Impacts: A New Way to Collect Samples from Space

For now, planetary scientists can only dream of getting their hands-on rock samples taken from the surfaces of distant worlds. Achieving these extractions presents a significant set of challenges, but Dr Robert Winglee and his colleagues at the University of Washington have made significant strides towards developing feasible techniques for retrieving samples. Through detailed computer design and field experiments, they have now clearly demonstrated that obtaining core samples created during high-velocity impacts with planetary surfaces could one day be a reality.

Dr Peter Evans – Retro-Causality: Unravelling the Mysteries of Quantum Cosmology

Dr Peter Evans – Retro-Causality: Unravelling the Mysteries of Quantum Cosmology

Despite many years of research aiming to unite quantum mechanics with cosmological theories, researchers in fields across physics and philosophy remain in disagreement about a solution. Now, Dr Peter Evans at the University of Queensland sheds new light on the debate. He argues that on quantum scales, the idea of cause and effect does not need to follow the one-way passage of time, as we understand it. If correct, his theories could dispel some of the most puzzling mysteries of quantum theory – a significant step forward in understanding the true nature of the universe.

Dr Scot Rafkin – Exploring the Weather of Titan and Mars

Dr Scot Rafkin – Exploring the Weather of Titan and Mars

The moons and rocky planets of our Solar System may be remote, unfamiliar worlds, but even on the very strangest of them, the weather on those with atmospheres is not wholly unlike our own. Dr Scot Rafkin, a planetary scientist at the Southwest Research Institute, believes that the small-scale patterns their atmospheres exhibit are directly comparable with Earth’s weather. Based on the results of computer models simulating the atmospheres of Titan and Mars, he argues that these local and regional behaviours are significantly underappreciated in planetary science.

GSMaP: Monitoring Rainfall from Space to Protect Communities

GSMaP: Monitoring Rainfall from Space to Protect Communities

Of all the Earth’s natural processes, rainfall is perhaps the one that has the most significant influence on our everyday lives. Yet as the climate changes, patterns in rainfall are becoming increasingly unpredictable, meaning it is now more critical than ever to monitor precipitation from space. The Global Satellite Mapping for Precipitation (GSMaP) project, founded by researchers from institutions across Japan, is doing just that. Through a combination of orbiting satellites and advanced algorithms, the project is now providing the global region with highly-resolved data on rainfall.

TEMPO: Monitoring North America’s Pollution from Space

TEMPO: Monitoring North America’s Pollution from Space

Created by sources ranging from campfires to cargo ships, air pollution is incredibly difficult to track. This has meant that the full impacts of air pollution are almost impossible to assess, but a solution is on the horizon. The TEMPO instrument (tempo.si.edu), built by Ball Aerospace to Smithsonian Astrophysical Observatory specifications and managed by the NASA Langley Research Center, will soon provide an all-encompassing view of pollution across North America. As part of a global constellation of satellite air quality missions, TEMPO will soon provide us with the most extensive view of pollution ever achieved, along with its impacts, allowing us to tackle it more effectively than ever before.

Dr Nancy Chabot | Dr Carolyn Ernst | Ariel Deutsch – Icy Discoveries on Our Innermost Planet

Dr Nancy Chabot | Dr Carolyn Ernst | Ariel Deutsch – Icy Discoveries on Our Innermost Planet

The location of water in our solar system may hold the key to understanding how the planets evolved, and indicate other potential places to find life away from Earth. Dr Nancy Chabot and Dr Carolyn Ernst of Johns Hopkins University Applied Physics Laboratory, and Ariel Deutsch at Brown University, use data from NASA’s MESSENGER mission to understand how much ice exists on Mercury and how it may have arrived there.

Professor Michael Behrenfeld – Advancing Satellite Technology to Monitor Ocean Phytoplankton

Professor Michael Behrenfeld – Advancing Satellite Technology to Monitor Ocean Phytoplankton

Tiny marine plants known as ‘phytoplankton’ play a disproportionately large role in maintaining the health of our planet, and they provide a rapid signal of changing climate conditions. Professor Michael Behrenfeld at Oregon State University and his many collaborators are developing new satellite approaches, including space-based lasers, to monitor ocean ecosystems. With these technologies, a 3D map of global phytoplankton communities is on the horizon, which will revolutionise our understanding of how these microscopic organisms make Earth a healthy place to live.

Dr Liming Li – Exploring Energy Flow in Planetary Atmospheres

Dr Liming Li – Exploring Energy Flow in Planetary Atmospheres

Within the atmospheres of different planets, energy is continually moving around and being converted into different forms. In his research, Dr Liming Li at the University of Houston studies how the different worlds of our solar system generate, transfer and convert energy in different ways. Through analysing the atmospheres of Jupiter, Saturn, Titan and Earth, his team has made discoveries that provide new insights both for astronomers and for scientists studying our own changing climate.

Dr Andreas Keiling – Alfvén Waves: When Earth’s Shield Comes under Attack

Dr Andreas Keiling – Alfvén Waves: When Earth’s Shield Comes under Attack

The Earth’s magnetic field has long protected us from surges of harmful charged particles originating from the Sun, yet physicists still don’t entirely understand what happens during this interaction. To explore the issue, Dr Andreas Keiling of the University of California at Berkeley studies the complex processes that take place during these so-called solar storms. His work has now begun to unravel the mysteries of the electromagnetic battleground far above Earth’s surface.

The SETI Institute’s Earthling Project

The SETI Institute’s Earthling Project

An exciting new endeavour at the SETI Institute, the Earthling project, aims to connect humans around the world through the universal language of music. Charged with the task of creating music that represents us as humans, composer Felipe Pérez Santiago aims to foster...

The Royal Astronomical Society

The Royal Astronomical Society

  Established almost two centuries ago, the Royal Astronomical Society (RAS) is the UK’s learned society dedicated to facilitating and promoting the study of astronomy, solar-system science and geophysics. In this exclusive interview, we speak with the Society’s...

The First Royal Meteorological Society Climate Change Forum

The First Royal Meteorological Society Climate Change Forum

As the UK’s professional and learned society for weather and climate science, the Royal Meteorological Society (RMetS) has become a leader in advancing our understanding of anthropogenic climate change. On the 4th of June this year, the Society will host its first...

Outcomes of Gender Summit 11, Co-hosted by NSERC

Outcomes of Gender Summit 11, Co-hosted by NSERC

From November 6 to 8, 2017, more than 675 advocates of gender equity from across many different fields in science, technology, engineering and mathematics (STEM) took part in Gender Summit 11, in Montreal, Quebec. Co-hosted by the Natural Sciences and Engineering...