Engineering and Technology

Kevin R. Supak | Tapered LADs: Acquiring Cryogenic Liquid Propellants in Deep Space

Kevin R. Supak | Tapered LADs: Acquiring Cryogenic Liquid Propellants in Deep Space

To carry out complex manoeuvres such as orbit insertion, large spacecraft on long voyages must carry tanks of liquid propellants, kept at ultra-cold temperatures. In existing designs, however, heat leaking into these tanks can form unwanted vapour bubbles in the channels required to extract their contents – which are especially difficult to remove in the microgravity environment of deep space. In their research, a team at the Southwest Research Institute presents a simple solution to this problem – through which the sides of these extraction channels are tapered, allowing vapour bubbles to escape. Results from recent microgravity testing of this technology could lead to exciting new opportunities for future space missions.

Dr Alessia Besford | Understanding the Crown of a Nanoparticle

Dr Alessia Besford | Understanding the Crown of a Nanoparticle

Medical nanoparticles are an innovative method of delivering drugs to highly specific locations in the body, such as tumours or across the blood-brain barrier. Once a nanoparticle has entered the bloodstream, it forms a crown of surrounding biomolecules called a corona. The composition of this corona depends on its biological environment and the material of the nanoparticle itself and it has significant implications for how the nanoparticle interacts with the human body. Dr Alessia Besford from the Leibniz Institute of Polymer Research Dresden studies these interactions and how they can be refined to develop more effective medical nanoparticles.

Dr John Slough | Fuelling the Next Generation of Rockets with Nuclear Fusion

Dr John Slough | Fuelling the Next Generation of Rockets with Nuclear Fusion

Most rockets combine liquid hydrogen and oxygen to throw out extremely hot, expanding gas as a propellant; however, there are limits to the efficiency of this system. Dr John Slough and his colleagues at MSNW and the University of Washington have been developing new ways to propel spacecraft, with inspiration from the process that powers the Sun: nuclear fusion. Using an innovative design, his fusion-driven rocket converts the energy output of a fusion reaction directly into the propellant, opening new opportunities for space travel and exploration.

Logan Kossel | John Pfotenhauer – Advancing Cryogenic Technologies Through Pulsating Heat Pipes

Logan Kossel | John Pfotenhauer – Advancing Cryogenic Technologies Through Pulsating Heat Pipes

Comprising thin tubes that contain ultra-cold liquids and vapours, ‘cryogenic pulsating heat pipes’ can transport heat far more rapidly than even the most conductive metals. Logan Kossel and John Pfotenhauer at the University of Wisconsin-Madison are exploring the unique capabilities of this technology in unprecedented levels of detail. Through their research, they hope to boost the performance of pulsating heat pipes even further – potentially leading to new breakthroughs in many technologies that rely on cryogenic temperatures.

Professor Rui Martins | Building a Microelectronics Research Group from the Ground Up

Professor Rui Martins | Building a Microelectronics Research Group from the Ground Up

Microelectronics are the minuscule components that power our modern world, from your smartphone to the systems that keep jet airliners in the sky. These essential components, such as transistors, resistors, capacitors, and inductors are the building blocks of microchips – the tiny computing units that process vast quantities of binary information. However, the world around us isn’t binary. Engineers must develop ways to translate between the analogue world that we inhabit and the binary world of chips. Over the last 30 years, Professor Rui Martins of the University of Macau has built a world-renowned research lab – the State Key Laboratory of Analog and Mixed-Signal VLSI – focused on further bridging the gap between analogue and digital.

Yiqiao Yin | Tracking Deforestation with Neural Networks

Yiqiao Yin | Tracking Deforestation with Neural Networks

Forests are key to Earth’s biodiversity and the global ecosystem, hosting 80% of the planet’s plant biomass and two-thirds of all mammal species. However, they are also in decline; each year, around five million hectares of woodland are lost to logging and wildfires. Tracking this loss is essential to controlling and mitigating deforestation, but this requires careful interpretation of satellite imagery. Yiqiao Yin, Kieran Pichai, Benjamin Park and Aaron Park have developed a model to automatically identify forests from these images. Their new approach is already showing huge promise.

Yiqiao Yin | Seeing Deep into the Lungs with Deep Learning

Yiqiao Yin | Seeing Deep into the Lungs with Deep Learning

X-rays and other forms of medical imaging let doctors peer into the body, revealing the internal structure of organs and tissues without invasive surgery. Doctors use the results to identify abnormalities such as broken bones, diagnose diseases such as cancer, or even monitor the health of a foetus within the womb. Although this technology is remarkable, the images aren’t useful in isolation. Experts must analyse the resulting data and parse what is healthy or unhealthy from the noise. Yiqiao Yin, Jaiden Schraut, Leon Liu and Jonathan Gong have created new machine learning technologies to support that crucial interpretation, focusing on X-rays and lung health.

Dr Michael J Webber | A Comprehensive Assessment of a Chinese Water Management Project

Dr Michael J Webber | A Comprehensive Assessment of a Chinese Water Management Project

Transferring water from one river basin to another is supposed to help us better manage our planet’s water resources. The South-North Water Transfer Project (SNWTP), an inter-basin water transfer effort in China, can transfer 25 billion cubic metres of water per year over long distances. Dr Michael J Webber of the University of Melbourne and his colleagues have been exploring the benefits and challenges of the SNWTP, to assess its socio-political, environmental, and economic impacts. His research aims to gain valuable insights about the politics of vast technologies, and how inter-basin water schemes might be managed.

Dr Susmita Bose | 3D Printed Bone-like Materials for Delivering Natural Medicine

Dr Susmita Bose | 3D Printed Bone-like Materials for Delivering Natural Medicine

Some of the greatest advances in medical history have revolved around the creation of new materials that can replace damaged tissues in the body. Today, many researchers focus on creating materials that can replace damaged bone tissue, which often cannot heal naturally. Dr Susmita Bose and her team at Washington State University have been researching ways to engineer exciting new materials that mimic the structure of natural bone, allowing us to live happier, healthier, and longer lives.

Steve Schmalz | An Innovative Circuit Breaker for Renewable Power Grids

Steve Schmalz | An Innovative Circuit Breaker for Renewable Power Grids

A key step towards a carbon-neutral future could be reached through dispersed power grids, featuring networks of local-scale renewable energy and battery storage plants. To prevent these power grids from damaging themselves and their surroundings when electrical faults arise, they must be integrated with ‘circuit breakers’, which temporarily interrupt the current flowing through them. However, currently available circuit breakers cannot handle the medium-voltage direct currents best suited for these grids. Through an innovative new circuit breaker design, Steve Schmalz and his colleagues at Eaton Corporation, the Illinois Institute of Technology (IIT), Virginia Tech and the National Energy Technology Laboratory (NETL), hope that this challenge will soon be overcome.

Dr Ming Lu | Explainable AI for Industrial Processes in Construction

Dr Ming Lu | Explainable AI for Industrial Processes in Construction

Within the wider worlds of engineering, manufacturing and construction, there is a growing demand for accurate computer modelling of large-scale projects. Through the use of artificial intelligence, engineers can more accurately predict and improve various aspects of construction work, from calculating the total cost of a project, to optimising the quality of concrete. Dr Ming Lu and his team at the University of Alberta are developing such artificial intelligence systems, towards ultimately overhauling how we plan large-scale engineering work.

Jenna Rackovan – Helping Fish Near Power Plants to Just Keep Swimming

Jenna Rackovan – Helping Fish Near Power Plants to Just Keep Swimming

Cleaner, greener electricity is imperative to meet the demands of a burgeoning population. Many power plants rely on vast quantities of water to cool their systems and maintain proper operation. But sucking up vast quantities of water can pose a risk for fish and other aquatic animals. Balancing the operational efficiency of power plant cooling systems with environmental protection requires a dedicated team of engineers and fisheries biologists. In their recent research, Jenna Rackovan and her colleagues at Alden Research Laboratory in Massachusetts optimise the use of travelling water screens for fish protection.

Dr Jekan Thanga – Designing Spacecraft to Explore Extreme Environments Within the Solar System

Dr Jekan Thanga – Designing Spacecraft to Explore Extreme Environments Within the Solar System

In the next few decades, upcoming technological advances will offer unprecedented opportunities to explore the solar system – both with autonomous robots, and through manned missions. Dr Jekan Thanga and the Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory at University of Arizona are at the forefront of efforts to design miniature spacecraft that will allow us to reach these distant worlds, and navigate their rugged, unfamiliar terrains. In the future, his team’s research could pave the way for the establishment of long-term, off-world human settlements, and the discovery of life in extreme, yet potentially habitable environments.

Dr Seyhan Salman – Advancing Organic Semiconductors through Computational Research

Dr Seyhan Salman – Advancing Organic Semiconductors through Computational Research

Organic semiconductors form the cornerstone of modern technologies, powering the screens we use in many of our digital devices. On top of this, they are also key materials in organic solar cells and medical biosensing devices, amongst other innovative applications. Dr Seyhan Salman and her colleagues at the Clark Atlanta University have been investigating organic semiconductors using advanced computational methods. Through this, her team hopes to pave the way to developing even more impressive technologies, which will benefit society in myriad ways.

Dr Jock Given – Retracing the History of Radio-frequency Management

Dr Jock Given – Retracing the History of Radio-frequency Management

Radio-frequency (RF) spectrum management is a crucial part of media and communications history, as it has shaped how people access information and communicate with others. Dr Jock Given, Professor at Swinburne University of Technology, has written numerous books and articles focusing on this topic. He combines ideas from economics, law, history, and business with his own experience as an economics researcher and policy advisor.

Professor Stefan Steiner – Harnessing Data to Make Better-informed Decisions

Professor Stefan Steiner – Harnessing Data to Make Better-informed Decisions

There are many situations where large volumes of data are collected over time, and processes can be greatly improved by gleaning insights from that data. For example, hospitals and healthcare authorities collect data on patient outcomes following treatment or surgery. By better analysing such data, patterns can be revealed and process changes can be implemented to improve patient outcomes. Professor Stefan Steiner and his colleagues at the University of Waterloo develop new models and statistical methods that can obtain such insights across a wide array of sectors, from improving healthcare to reducing road accidents.

Humango: Harnessing Artificial Intelligence to Boost Athlete Performance

Humango: Harnessing Artificial Intelligence to Boost Athlete Performance

For years, entrepreneurs have been trying to introduce artificial intelligence (AI) to endurance training in a way that makes a substantial difference in athlete performance. From platforms that make short-term adjustments to an athlete’s initial plan to ones that rely solely on subjective feedback for their subsequent prescriptions, the approaches have varied – but the industry has remained relatively unshifted. Now, researchers at Humango have built an AI engine that continuously adapts its recommendations to an athlete’s health data, performance metrics, random alterations in scheduling, and training response all at the same time. Allow us to introduce you to Humango and its founder, Dr Eric Abecassis.

Dr Nadia Bhuiyan – Lean Product Development: Adapting to the Modern Landscape

Dr Nadia Bhuiyan – Lean Product Development: Adapting to the Modern Landscape

Perfecting the product development process presents a daunting challenge to many modern companies, which must compete within their industries on a global stage. Through her research, Dr Nadia Bhuiyan at Concordia University shows how many different aspects of the process can be streamlined through the use of ‘lean’ processes – which aim to eliminate any waste in time, resources, and information. Through a combination of theory, analytical modelling, and case studies, her discoveries offer important new guidance for how companies can continue to thrive in an uncertain future.

Dr Arindrajit Chowdhury | Dr Neeraj Kumbhakarna – Innovative Methods for Measuring the Temperature of Flames

Dr Arindrajit Chowdhury | Dr Neeraj Kumbhakarna – Innovative Methods for Measuring the Temperature of Flames

While it may seem a simple task, being able to accurately measure the temperature of fire has been of interest to scientists for many years. If accurate methods were readily available, it would allow individuals and businesses to have much greater control over combustion, improving how we use fuel and reducing carbon emissions. Dr Arindrajit Chowdhury and Dr Neeraj Kumbhakarna at the Indian Institute of Technology Bombay have been developing ideal methods for measuring the temperature of flames, and creating solutions to facilitate their widespread use.

Dr Victor E. Cabrera – Dairy Brain: A Step Towards Smarter Management in Dairy Farms

Dr Victor E. Cabrera – Dairy Brain: A Step Towards Smarter Management in Dairy Farms

To manage their farms effectively, dairy farmers must base their decisions on real-time and continuous data streams, which collect information about feeding, milking, and an array of other factors. Dairy Brain is a toolkit introduced by Dr Victor E. Cabrera and his colleagues at the University of Wisconsin – Madison, which integrates the data streams collected by different software onto a single platform, and applies the latest algorithms to reveal novel insights. The technology could soon enable farmers and industry professionals to make far better use of the latest techniques in data analysis – and may even lead to new advances in efficiency and sustainability.

Dr Mark Gleason – Intelligent Spraying: Improving Prospects for Sustainable Pesticide Use

Dr Mark Gleason – Intelligent Spraying: Improving Prospects for Sustainable Pesticide Use

Pesticides may be essential in ensuring abundant and healthy yields of many crops, but so far, the techniques used to spray them have led to considerable environmental damage. In his research, Dr Mark Gleason, a plant pathologist at Iowa State University, assesses the performance of new technologies that can deploy pesticides on apple trees in more efficient and less hazardous ways. These approaches enable farmers to minimise pesticide use without sacrificing crop yields. Through combining laser-based ‘LiDAR’ (light detection and ranging) technology with disease-warning systems to time sprays efficiently, his project team hopes to offer more sustainable and environmentally friendly options for apple growers.

Dr Marolo Alfaro – Protecting Arctic Infrastructure as the Permafrost Degrades

Dr Marolo Alfaro – Protecting Arctic Infrastructure as the Permafrost Degrades

Roads, bridges, and airports are now being built all across the Arctic. However, as this happens, the future of the sturdy permafrost these structures are built upon is looking increasingly uncertain. In his research, Dr Marolo Alfaro at the University of Manitoba uses both computer modelling and real-world sensing to assess the impact that the Arctic’s warming climate is having on this infrastructure. Starting from analysis of a newly-constructed highway in Canada’s Northwest Territories, his team’s efforts could soon provide local communities with vital guidance as to how their infrastructure should be maintained and protected.

Dr Guodong (David) Zhan | Timothy Eric Moellendick | Dr Duanwei He – Cutting-edge Technology: Developing the Hardest Material on Earth

Dr Guodong (David) Zhan | Timothy Eric Moellendick | Dr Duanwei He – Cutting-edge Technology: Developing the Hardest Material on Earth

Because of its extreme hardness, diamond is used as a cutting material in a multitude of fields, from aerospace engineering to geothermal energy. Using ultra-high pressures and temperatures, scientists have created a new form of diamond, which is now the hardest material known to humankind. Dr Guodong (David) Zhan and Timothy Eric Moellendick at Saudi Aramco, alongside Dr Duanwei He at Sichuan University, are the scientists behind this record-breaking substance, which will serve as an ‘indestructible’ cutting and drilling material.

Viper20-V: A Microwave Sweeper for Disinfecting Public Spaces

Viper20-V: A Microwave Sweeper for Disinfecting Public Spaces

While UV-based techniques have so far proved highly effective for virus inactivation on surfaces, resonance-induced inactivation by microwaves is far more suitable for use in the disinfection of public spaces. For this purpose, TiaLinx has designed a microwave sweeper device named Viper20-V: a radio-frequency source that provides continuous microwaves, with frequencies adjustable over an extensive range. Demonstrated through an intensive series of experiments, the low-power disinfection technology could soon prove essential in helping economies to recover from the COVID-19 pandemic.

Dr Robert Dolin | Dr Srikar Chamala | Dr Gil Alterovitz – vcf2fhir: Bridging the Gap Between Genomics and Healthcare

Dr Robert Dolin | Dr Srikar Chamala | Dr Gil Alterovitz – vcf2fhir: Bridging the Gap Between Genomics and Healthcare

On molecular scales, the responses of our bodies to particular medical treatments are deeply engrained in our unique genetic codes. Yet so far, the advanced computer science technologies used to study patient responses and molecular-scale mechanisms have remained entirely independent from each other. Now, Dr Robert Dolin of Elimu Informatics, Dr Srikar Chamala at the University of Florida, and Dr Gil Alterovitz at Brigham and Women’s Hospital, address this issue through vcf2fhir: a resource capable of converting between the file formats used by both fields. Through future improvements, his team’s approach could soon transform the ways in which crucial clinical decisions are made.

SwarmMATE™: Swarming Drones for Real-world Missions

SwarmMATE™: Swarming Drones for Real-world Missions

The idea of unmanned drones flying together in expansive swarms may at first sound chaotic and unpredictable – yet with the right approach, these machines can enable their users to carry out coordinated and highly advanced missions. Through their research, John Sauter and colleagues at SoarTech have developed DSOARS – a transformative software that enables drones to mimic the behaviours of swarming animals found in nature. Their architecture now paves the way for real-world applications – from tracking forest fires and storms to aiding rescue missions.

Dr Hiroaki Nishiyama – A New Solution for Direct Laser Writing

Dr Hiroaki Nishiyama – A New Solution for Direct Laser Writing

Direct Laser Writing is a remarkably useful way to deposit intricately patterned materials onto surfaces. So far, however, the range of materials that can be used in the technique has been severely restricted. Now, Dr Hiroaki Nishiyama and his team at Yamagata University in Japan introduce an entirely new approach based on the unique properties of nanoparticles when suspended in a silver-based solution. When illuminated with ultra-short laser pulses, the setup can create highly stable patterns with sophisticated nanoscale structures – substantially broadening the range of materials available for use in the technique.

Dr Vijaya Raghavan – Developing Food Processing Methods Through Scientific and Engineering Solutions

Dr Vijaya Raghavan – Developing Food Processing Methods Through Scientific and Engineering Solutions

The food processing industry generates enormous quantities of waste every year. On top of this, the way that food is processed can have negative impacts on the health of consumers. Therefore, it is vitally important to develop new food processing methods that consider human health while producing minimal waste. Dr Vijaya Raghavan and his research group at McGill University, Montreal, have been applying their expertise in chemistry and engineering to develop and optimise food processing techniques, to ensure the future health of people and the environment.

Dr Kim de Mutsert – Identifying Effective Strategies to Protect Louisiana’s Precious Wetlands

Dr Kim de Mutsert – Identifying Effective Strategies to Protect Louisiana’s Precious Wetlands

The Louisiana coastal zone is the fastest-eroding wetland in the US. This region is home to a variety of vitally important fish species for local fishing industry and ecosystems, which are currently under threat. Conservation schemes have been proposed under the 2017 Louisiana Coastal Master Plan in an attempt to preserve coastal habitats and their inhabitants. Dr Kim de Mutsert of the University of Southern Mississippi and her colleagues use simulations to reveal how different management strategies will affect fish and shellfish up to 50 years from now.

Dr John Barnes – Monitoring Atmospheric Pollution with Laser Imaging

Dr John Barnes – Monitoring Atmospheric Pollution with Laser Imaging

Lidar (Light Detection and Ranging) is a laser-based remote sensing tool that can measure the concentration of small particles, called aerosols, in the atmosphere. Monitoring aerosols is crucial for climate modelling, air quality measurements, and understanding the health impacts of atmospheric pollution. However, existing lidar systems require sophisticated and expensive equipment and are usually deployed by research technicians. They also have trouble measuring atmospheric pollutants near the ground, where they impact human health. Scientist Dr John Barnes at NOAA in Boulder, Colorado, and his colleagues have developed an inexpensive and straightforward commercial lidar solution using widely available camera and optical equipment.

Dr Hui Xiong – Matching People with their Ideal Job Using Artificial Intelligence

Dr Hui Xiong – Matching People with their Ideal Job Using Artificial Intelligence

The main responsibility of recruitment consultants is to match individuals to jobs that best suit their professional experience, skills, capabilities, dispositions, and academic background. Dr Hui Xiong at Rutgers University has been leading efforts to develop tools based on artificial neural networks that can automatically identify the right individuals for specific roles. Over the past few years, he has led efforts to design a comprehensive intelligent HR management system that could bring significant intelligence in human resource management.

Professor Masahito Oh-e – Intriguing Molecular Discoveries in Display Materials

Professor Masahito Oh-e – Intriguing Molecular Discoveries in Display Materials

It is a widely-accepted scientific fact that the motions of molecules increase as their temperature rises. However, Dr Masahito Oh-eat the National Tsing Hua University in Taiwan has recently made a counterintuitive discovery in an organic semiconductor called ‘CADN’. Within a thin film of this material, his team has found that the motion of one part of the CADN molecule increases, while another part becomes more ordered as the temperature increases and approaches the material’s phase transition. This research is scientifically intriguing, but also has profound implications for improving display technologies based on organic semiconductor materials.