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Solving Unsolvable Equations with a New 
Number System

If you are somewhat familiar with advanced 
mathematics, specifically number theory, it 
is likely you have heard of p-adic numbers. 
Often spoken of with reverence, and 
described as one of the most difficult areas 
in pure mathematics, p-adics are regarded 
as inaccessible to the public. However, 
they have many real-world applications, 
such as encryption algorithms, and have 
the potential to solve several problems 
in fundamental physics through theories 
such as p-adic quantum mechanics. The 
modular way in which p-adics retain 
information about the equivalence between 
different numbers is fundamental to the 
demonstration of Fermat’s Last Theorem, as 
discovered by Andrew Wiles no less than 350 
years since Fermat first stated it. In fact, the 
consequences of the p-adic number system 
stretch far beyond that. Although they started 
as a natural quirk derived from the need to 
solve Diophantine equations (polynomial 
equations in which only integer solutions 
are allowed), it is believed that they have 
deep implications touching upon the Birch 
and Swinnerton-Dyer conjecture and the 
Riemann Hypothesis – two open Millennium 
Prize Problems. 

For Professor Amnon Besser of Ben-Gurion 
University of the Negev, p-adics have been a 
source of hope for finding a specific answer 
to a computational problem. Part of his 
problem involved an integration method 
developed by Robert Coleman, a method 
which is the p-adic equivalent of integration 
along a curve between two points. After his 
PhD, Professor Besser often used Coleman 
integration while delving into p-adic number 
theory. Later on, he heard that algorithms 
that compute a function called p-adic 
height could have important applications in 

cryptography. At that time, such an  
algorithm had already been produced, but  
Professor Besser felt he could create a 
better, more general one. Later on, he joined 
forces with Jennifer Balakrishnan, who was 
working on finding certain solutions specific 
to computing Coleman integrals. Their work 
produced a new method for computing a 
function called a p-adic height pairing,  
and facilitated the generalisation of  
Professor Besser’s previous results. 

Now, a large part of Professor Besser’s 
research focuses on using numerical 
methods to find rational solutions of 
algebraic equations. Developing numerical 
methods can address situations where 
no exact solutions are known for a class 
of equations, by reducing the problem to 
number crunching. In general, these types of 
numerical solutions can help scientists and 
engineers when dealing with an ill-behaved 
function that models an aspect of applied 
research. 

In order to have a better understanding of 
these problems, let’s go back to the basics of 
p-adic number theory. 

What Are P-adics?

P-adics were created from a desire to apply 
the techniques of power series methods to 
number theory, as a way to express certain 
numbers or mathematical problems in a 
tractable way. After all, number theory, or 
the queen of mathematics as Gauss called 
it, is famous for posing some of the most 
difficult conjectures in the entire field of 
mathematics. Thus, the idea to create tools 
that would transform intractable problems 
into approachable ones is a very natural 
strategy. 

MAPPING P-ADIC SPACES 
WITH HEIGHT PAIRINGS
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colleagues are exploring p-adic numbers – one of the most difficult areas 
of number theory – in order to solve long-standing open problems bridging 
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Just like complex and real numbers, p-adic 
numbers extend the rational number system 
ℚ and its associated arithmetic operations. If 
rational numbers can be expressed as a ratio 
between two integers p/q, real numbers are 
expressed as an endless decimal expansion. 
One such number is π and another is √2, and 
even 1 can be written as 1.000… or 0.999… for 
example, which is a sum of an infinite number 
of powers of 1/10. Unlike real numbers, p-adics 
are expressed as sums of powers of a prime 
number, usually denoted by p. Since the 
letter p is simply a placeholder for the base, 
replacing it with some number will yield base-
dependent names like 2-adics or 17-adics and 
so on.  

In a way, p-adic numbers are the opposite 
of real numbers. The difference derives from 
the ordering or closeness within the number 
system. If two real numbers that differ in the 
10ᵗ  decimal digit are closer than two other 
numbers differing in the 2 ᵈ decimal digits, for 
p-adics the concept of closeness is a much 
more interesting one. Albeit counterintuitive, 
this is thoroughly consistent within the p-adic 
number system. Thus, p-adics are close when 
their difference can be divided by a high power 
of p. The higher this power is, the closer the 
two numbers are said to be. In our example 
where p is a fixed prime and e a variable power, 
the difference between p-adics is divisible 
by pe and the numbers are close when e 
is very large. In other words, two decimal 
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representations of a real number are close 
when the difference between them is a large 
negative power of 10, whereas two p-adic 
expansions are close when their difference is 
a large positive power of p. For p-adics, the 
concept of closeness opens the possibility 
to encode information about congruence of 
absolute value, which could be called their 
measure, in a new and interesting way.  

In addition, p-adics can be considered 
opposites of real numbers in terms of their 
representations. Due to change of base, 
p-adic numbers are written from right to 
left, each digit added to the left increasing 
the precision of the number representation. 
Recall that expansions of real numbers are 
written the other way around, from left to 
right, with a finite number of digits before 
the decimal point and an infinite number 
of digits after it. P-adics, on the other hand, 
can have an infinite number of digits to 
the left. Moreover, the p-adic number 
system is based on the modular number 
system, like a clock that resets to zero when 
reaching 12-midnight, which means that the 

arithmetical operations behave differently 
from those of usual arithmetic. One reason 
why p-adics are a particularly neat number 
system is that the base must be a prime 
number, otherwise the set of all numbers 
obtained from arithmetic operations is not 
closed under these operations. In other 
words, you can divide p-adics with a non-
prime base and get a number that was not 
part of the initial set. 

Mapping the Path to Unique Solutions

Although p-adics in particular and number 
theory in general seem to be purely abstract 
mathematics, they are both born of the  
very simple goal of solving equations.  
As Professor Besser explains, ‘I look for new 
methods for solving equations. I put the 
usual well-known numbers inside some 
bigger space from which one can cut out the 
pieces containing the solutions.’

These equations are important for all types 
of applied problems in physics, engineering, 
finance, and other fields. In their simplest 

form, the Diophantine equations that led to 
the development of p-adics can be written 
as ax + by = c, where x and y are variables 
and a, b and c are constants. In addition, 
p-adics methods can be used to study 
superelliptic equations, where yᵐ = f(x), and 
hyperelliptic equations of the form y2 = f(x). 
The representations of these equations are 
often called curves in the formal language of 
mathematics due to their shape. Sometimes, 
these curves self-intersect to form a closed 
boundary.   

‘I look for new methods for solving equations. I put the usual 
well-known numbers inside some bigger space from which one 

can cut out the pieces containing the solutions.’

Elliptic curve



One of the peculiarities that follow from the 
rules of p-adics is that they cause unusual 
behaviour. In a geometric interpretation, 
p-adic numbers form a space much like 
the Euclidean flat space in which we live. 
However, their space has a completely 
foreign definition of the distance between 
two points, called a metric. In this space, 
the triangle inequality is stronger than in flat 
space. As Professor Besser points out, one 
consequence of this is that ‘any two circles 
are either disjoint or one contains the other.’ 
Because of this property, functions such 
as integrals, when defined over complex 
numbers, can be extended beyond their 
normal domain by creating analytical paths 
and moving from one point to the next. This 
technique, called analytic continuation, 
allows mathematicians to find rigorous 
answers to otherwise intractable problems, 
such as extending functions over singularities 
or summing certain series. However, these 
techniques conceal a trap in complex spaces. 
When following the analytic continuation 
of a function, the calculation may descend 
into a loop and retrieve multiple values for 
the same calculation. However, the strange 
behaviour of p-adic spaces does not support 
analytic continuation at all, resulting instead 
in a huge multivaluedness, too large for 
practical purposes.
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Professor Besser found a way to overcome 
the problem of multi-valued results for the 
same function by continuing Coleman’s work 
on integration. Recall that Coleman worked 
on defining the equivalent of integration 
under a curve for p-adics. Professor Besser 
interpreted Coleman’s ideas in a way that 
led to a formal definition of paths. By 
making certain assumptions about the 
way in which the functions transform along 
the paths, ‘these paths live on a discrete 
structure obtained by shrinking all the 
small circles in the p-adic world to points,’ 
as Professor Besser explains. In this way, 
instead of working with a discrete space 
where functions would jump between circles, 
he went on to recover the continuum in the 
limit of the circles tending to zero. Moreover, 
the same operator that remembers how 
functions transform along the paths also 
maintains them as fixed and allows for 
unique answers to be found, thus eliminating 
the problem of multi-valued results. Although 
they are more difficult to define, Coleman 
integrals are better in some cases than 
complex integrals because they are single 
valued.

The only solutions in integers to

are (2,    3); (1,   1), (0,   1).

1

y2 = x3(x – 1)2 + 1.

Meanwhile, Professor Besser’s colleagues, 
including Minhyong Kim from Oxford, used 
a non-abelian generalisation of a method 
devised by Claude Chabauty in 1941 to find 
rational-valued points on curves with special 
properties. The Chabauty method allowed 
them to progress in theoretical directions, 
by showing that some Coleman integrals 
become equal to zero on rational solutions 
of certain equations. This important finding 
proved that these integrals have a finite 
number of solutions, because a Coleman 
integral can become 0 only a finite number 
of times.

During this time, Professor Besser focused on 
the practical question of actually finding the 
rational and integral solutions to equations 
using the Chabauty method. His approach 
involved using p-adic height pairings. The 
approach is based on the idea that rational 
solutions to equations can be added 
together in some sense. The advantage of the 
p-adic height pairing is that it transforms in a 
very simple way when solutions are added, 
and this leads to equations on the values of 
the height pairing at integral points. Based 
on Professor Besser’s previous work, these 
equations can be expressed as a Coleman 
integral becoming zero. Although this 
seems like a simple enough exercise, there 
are in fact many categories of unsolvable 
equations. Solutions to these equations, as 
well as techniques used for their solution, 
could bring great advances in computer 
science and computational physics. ‘One 
of the key points in the computation of 
Coleman integrals is the Kedlaya algorithm, 
which finds the number of solutions of 
certain equations modulo a prime p, a 
problem whose primary motivation is in the 
field of elliptic curve cryptography,’  
Professor Besser tells us. Recall that elliptic 
curves are representations of algebraic 
elliptic equations. Plotting the points of these 
equations results in curves which often self-
intersect, forming a closed boundary. Elliptic 
curve cryptography uses such equations to 
generate much shorter secure public keys 
than those generated using other methods. 

Professor Besser hopes to extend p-adic 
height pairings to more general cases 
and use them to solve badly behaved 
equations. The latter is an important step in 
understanding the relevant mathematics in a 
fundamental way, and in solving some of the 
most interesting open problems of the field. 
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