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Probing Electron 
Dynamics in the 
Ultrafast Regime

In the atoms that make up the matter around 

us, negatively charged particles called 

electrons have properties such as spin and 

orbital angular momentum. Researchers at 

Martin Luther University Halle-Wittenberg have 

developed a theoretical framework which 

allows them to simulate the dynamics of 

the spin and orbital angular momentum of 

electrons in materials when probed with an 

ultrafast laser pulse. Using this framework, they 

are able to simulate different materials and 

improve our understanding of dynamics on an 

atomic scale.

Simulating Ultrafast Electron Dynamics Induced 
by a Femtosecond Laser Pulse

Everything around us is made up of subatomic particles, with 
positive protons and neutrally charged neutrons forming the 
nuclei of atoms, surrounded by negatively charged electrons. 
These electrons have a property known as spin, which describes 
the intrinsic rotational motion of the particle around its own 
axis. Understanding the dynamics of this spin helps us to further 
understand how these electrons move throughout different types 
of materials, or what happens at different material interfaces, and 
helps scientists to develop future experiments to examine these 
properties further. 

Researchers from Martin Luther University Halle-Wittenberg look at 
ultrafast electron dynamics. They consider timescales of fractions 
of a second, considering femtoseconds, or one quadrillionth 
of a second, to picoseconds, or one trillionth of a second. By 
considering the dynamics when a bright, powerful light pulse 
of this duration from a laser is incident on a material, the team 
can learn more about properties like magnetism and currents 
generated within the material. 

The research team have developed a theoretical model which 
can simulate these dynamics. To carry this out, they firstly 
represent their sample as a cluster of atoms – this could be 
a one-dimensional chain, a two-dimensional structure with a 
regular pattern, or a three-dimensional structure with defects 
or irregularities in the material structure. Each cluster consists 
of a regular arrangement of atomic nuclei and electrons and 
has specific boundary conditions based on its proximity to other 
clusters. 

From this set-up, the researchers define a Hamiltonian, an 
operator which tells us about the energy in the system. By finding 
the eigenstates of this Hamiltonian, which tell us about the 
possible outcomes of measurements of the quantum state, the 
team can analyse electron dynamics. A simulated laser pulse is 
defined and then applied to the cluster of atoms, which causes 
transitions in the orbital structure of the electrons, or the structure 
of the electrons around the nucleus.

Another aspect considered in their simulations is thermalisation. At 
some time scales, bosons around the electrons, like phonons and 
magnons, can couple with the system and try to reach thermal 
equilibrium with the electrons. The team account for this through 
a bosonic bath, or by simulating that their atom cluster is coupled 
to these bosonic particles. By considering the laser pulse and this 
bosonic bath, they can then evolve the system during the pulse 
and simulate the changes to the electron and spin dynamics – 
and to reflect this, they call their approach ‘EVOLVE’. 

Simulating Electron Dynamics at Interfaces

The team use their simulation model to look at an interface 
between cobalt and copper. From this, they are able to consider 
the occupation of the orbitals or consider the energies at which 
electrons no longer remain in their standard orbit around the 
nucleus. Using these occupation profiles, they can also consider 
the magnetic properties of the sample. Prior to the pulse, cobalt 
is a ferromagnetic material containing electrons in its outermost 
orbitals which give it this property, whereas copper is not 
magnetic. As the pulse is applied, the team can simulate how the 
cobalt becomes demagnetised due to the motion of the electrons 
at the interface. 
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This demagnetisation occurs due to spin-transfer across the 
interface between the cobalt and the copper, which the team 
are able to simulate. The laser pulse leads to a flow of electrons 
from the copper to the cobalt, causing a demagnetisation of the 
cobalt and a slight increase above zero in the magnetisation of 
the copper. The research team are able to simulate this through 
looking at the currents, both in the flow of charge and the flow of 
spin angular momentum, between the atoms in their simulation.

Simulating Dynamics of Orbital Angular 
Momentum at Interfaces

As well as being able to simulate the dynamics of the electrons’ 
spin angular momentum, the team also consider the dynamics 
arising from the orbital angular momentum of the electrons. Whilst 
spin is the intrinsic property of the electron itself, the motion-
related orbital angular momentum tells us about the orbit of the 
electron around the nucleus at the centre of the atom. The team 
look at how ultrafast laser pulses can potentially induce orbital 
angular momentum, and how this is distributed across the sample. 

To carry this out, the researchers use the ‘EVOLVE’ approach as 
outlined above, applying it to copper and cobalt, as well as to a 
copper-cobalt interface. For these investigations, the team use a 
circularly polarized ultrafast laser pulse. Based on the geometry 
of the sample and the laser pulse, they can consider components 
of the orbital angular momentum which are induced along the 
longitudinal and transversal directions. The team also consider the 
spatio-temporal properties, or the change in the location of the 
induced orbital angular momentum over time, and can simulate 
the respective orbital currents also. 

The team find that, for their simulations of copper, all the 
components of the laser-induced orbital angular momentum 
oscillate rapidly, even after the laser pulse is completed. In 
particular, the component in the longitudinal direction oscillates 
only a little, at a value which could potentially be measurable 
in future experiments. For the cobalt, the team observe some 
oscillation during the laser pulse, but this stops after the pulse. 
They use this to suggest how the electron dynamics described 
above contribute to the demagnetisation of cobalt, with little 
effect from the orbital angular momentum. 

The research team also evaluate a copper-cobalt interface. 
They consider how the polarisation of the laser pulse affects 
the transfer of spin and orbital angular momentum across this 
interface, highlighting how having a p-polarised laser pulse 
would be needed to transfer orbital angular momentum between 
copper and cobalt.

Simulation of the Ultrafast Orbital Hall Effect

By investigating the orbital angular momentum in two-
dimensional samples in the presence of an ultrafast laser pulse, 
the research team can also investigate the orbital Hall effect. The 
Hall effect originally shows how, if we place a flat piece of some 
electrically conducting material between the north and south pole 
of a magnet and then connect the sample to a battery so current 
flows through it, we produce regions of positive and negative 
charge –or a potential difference– in the sample. A similar effect 
can also be found for electron spins, where if a current flows 
through a sample, opposite spins accumulate on each side of 
the material at right angles to the direction of the current. The 
research team investigate the orbital counterpart of this, looking 
at how orbital angular momentum accumulates in the sample. 

By considering the laser pulse 
and this bosonic bath, they can 
then evolve the system during the 
pulse and simulate the changes 
to the electron and spin dynamics 
– and to reflect this, they call their 
approach ‘EVOLVE’.
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To do this, they use a nanoribbon structure of copper, a thin 
two-dimensional structure which is assumed to be infinite in one 
direction. Their ‘EVOLVE’ approach is again used in this simulation, 
and the electric field of the laser leads to a current along the 
nanoribbon. By looking at the sites of the nanoribbon, the team 
consider if the site has orbital angular momentum, and how the 
orbital angular momentum changes over the duration of the laser 
pulse. They identify the transversal flow of an electron current to 
the edges of the nanoribbon, and how within half of the cycle of 
the laser pulse, positive orbital angular momentum is transported 
towards the upper edge of the nanoribbon, and then in the next 
half of the cycle it is transported to the lower edge. This transversal 
orbital angular momentum current is a signature of the orbital Hall 
effect and oscillates with the electric field of the laser pulse. 

The researchers also study how the orbital angular momentum 
is distributed over the nanoribbon, to identify this accumulation 
at the edges of the material, which is characteristic of the orbital 
Hall effect. To do this, they analyse whether a site on the lattice is 
occupied or not and, if a site has orbital angular momentum, over 
time as well as looking at how these quantities are distributed in 
space and time. Their simulations highlight how both quantities 
show higher values at the edges as opposed to in the middle of 
the nanoribbon. From these simulations, the team reveal how the 
ultrafast orbital Hall effect here is laser driven. Using an oscillating 
field, they are able to simulate both currents of orbital angular 
momentum throughout the material and how the orbital angular 
momentum accumulates. 

Overall, through their development of a theoretical model to 
study laser-induced electron dynamics and the creation of their 
‘EVOLVE’ simulation framework, the research team have been able 
to investigate multiple electron properties in different materials 
with atomic and femtosecond resolution. From looking at electron 
dynamics to understand demagnetisation and spin currents 
at the copper–cobalt interface, through to the consideration of 
orbital angular momentum and the orbital Hall effect, the team 
have demonstrated how their model can help us to learn more 
about these dynamics and system requirements. With new 
experimental techniques being developed in this field, being 
able to effectively simulate a range of materials and the effects 
of different laser pulses is an invaluable tool for the solid state 
physics community.  

Article written by Imogen Forbes, MSci

Snapshots of the ultrafast orbital Hall effect in a two-
dimensional sample (gray rectangular solid). (a) A 
linearly polarized femtosecond laser pulse impinges 
perpendicular to the surface (along the z axis) onto the 
sample. The laser’s electric field E (orange), oscillating 
along the nanoribbon (±x direction), causes an oscillating 
longitudinal charge current j, which, at the moment 
depicted here, is oriented in +x direction (black arrow) 
and is deflected toward the ribbon’s edges; confer 
the three representative pairs of current filaments 
(bent blue and red arrows). Hence, orbital angular 
momentum (OAM) Lz is transported across the ribbon, 
giving rise to a transverse OAM current jL (yellow arrow 
along +y direction). As a result, Lz is accumulated with 
opposite orientation at the edges (upward red and 
downward blue arrows). (b) Half a laser’s period later, 
the reversal of E reverses the orientation of j, jL, and Lz 
The periodic field switching creates an ultrafast (on the 
femtosecond scale) orbital Hall effect.
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