DOI: doi.org/10.33548/SCIENTIA1349
MORE ARTICLES YOU MAY LIKE
Sara F Martin | The Sun’s Magnetic Activity May Be More ‘Superficial’ Than We Thought
Scientists have long debated where solar cycle magnetic fields come from—deep within its interior or closer to its surface. Compelling new evidence suggests these fields may originate much closer to the Sun’s visible surface than previously thought, with important implications for understanding our star’s complex magnetic behaviour. The Sun’s activity also holds important implications for exoplanets currently being discovered around many solar-like stars.
Dr Khaled Mnaymneh | Does a Boundary Exist Between Classical and Quantum Mechanics?
Physicists typically have two frameworks for considering mechanics – a classical picture, looking at larger-scale objects, or a quantum picture, considering things on a subatomic scale. Where the boundary between these two pictures lies is an open question. Dr Khaled Mnaymeh from National Research Council Canada and Carleton University argues that this boundary does not exist. Through his analysis of Bell’s inequality, configuration space, and counterfactual definiteness, his work highlights the importance of considering these foundational principles in our study of the world around us.
Professor Yi-Gang Xu | It’s Written in the Stones – New Moon Rock Samples Demand a Rethink of Lunar Cataclysm Theory
A significant debate continues between scholars in the astronomical community regarding the early history of our solar system. It’s been hypothesised that the solar system experienced a dramatic cataclysm a short while —in cosmological terms— after the Earth and Moon solidified. Dubbed the Late Heavy Bombardment theory, disturbances in gas giant orbits may have caused a sudden hailstorm of comets and asteroids to be hurled towards the inner planets. Lunar rock samples collected from craters during Apollo missions seemed to support the idea, but new evidence is demanding a rethink.
Professor Yi-Gang Xu and his team examined samples recovered from the Chang’e-6 mission in 2024, and they suggest a more gradual change in the frequency of asteroid impacts, rather than a sudden, violent cataclysm.
Assistant Professor Matjaž Gomilšek | Ghost in the Material: Using Muons to Study the Effects of Quantum Jitters
Nothing can ever be perfectly still, no matter how cold you make it. Take solid nitrogen, for example, which freezes at a bone-chilling -210 °C. You might expect its molecules to be frozen rigidly in place but, even at such extreme temperatures, they have a life of their own. At the microscopic level, quantum effects become important and random fluctuations ensure that molecules of solid nitrogen will jitter unceasingly. In the limit of absolute zero temperature, these tiny movements can have a considerable influence on the properties and behaviour of whole materials. New work published by a collaboration of scientists from Slovenia and the UK has sought to develop a better understanding of the effects of this quantum motion.



