Earth, Environmental & Agricultural Sciences
Dr Marta Berrocal-Lobo | Unlocking the Potential of Essential Oils: Illuminating Epigenetic Effects on Plant Defense Mechanisms
Essential oils (EO) are potent in enhancing plant stress responses and mitigating seed-borne diseases, particularly in high-value crops such as tomatoes. While their direct impacts are recognised, the indirect influences on plant growth, metabolism, and immune responses against phytopathogens remain uncertain. Dr Marta Berrocal-Lobo, an esteemed Associate Professor and researcher at the Polytechnic University of Madrid, in collaboration with the Group of Biopesticides led by Dr Azucena Gonzalez-Coloma, is unravelling the transcriptomic and metabolic responses of tomato seeds treated with an antifungal EO against the pathogen Fusarium oxysporum sp. Their findings pave the way for harnessing EO in sustainable agriculture.
Dr Yusuke Mori | Changing Demands and the Optimisation of Processes in Japan’s Energy Landscape
The Snake River in the northwestern United States was once home to abundant populations of Chinook salmon. However, the building of hydropower dams has led to a dramatic drop in their numbers and puzzling changes in their migratory behaviour. Dr Charles Coutant and other biologists in the region embarked on a mission to uncover exactly how these dams are interfering with the crucial downstream journey of young Chinook salmon. His creative approach, drawing on knowledge from many different fields, has revealed a hidden culprit that may be throwing these fish off course.
Dr Charles Coutant | Dams, Disruption, and the Plight of the Chinook Salmon: Unravelling the Mystery of Delayed Migration
The Snake River in the northwestern United States was once home to abundant populations of Chinook salmon. However, the building of hydropower dams has led to a dramatic drop in their numbers and puzzling changes in their migratory behaviour. Dr Charles Coutant and other biologists in the region embarked on a mission to uncover exactly how these dams are interfering with the crucial downstream journey of young Chinook salmon. His creative approach, drawing on knowledge from many different fields, has revealed a hidden culprit that may be throwing these fish off course.
Prof. Dr. Michelle van Vliet | Invisible Water Crisis: Water Scarcity is Affected by Complex Interactions of Water Quality and Sectoral Use
Sufficient water of good quality is vital for humankind and nature. A growing global population increases the demand for water of suitable quality. In addition, climate change and increases in extreme weather events, such as droughts and heatwaves, directly affect the availability, quality, and use of water. These three factors – availability, quality, and use – interact in complex ways. Prof. Dr. Michelle van Vliet at Utrecht University is pioneering our understanding of the drivers of clean water scarcity under global change and proposing solutions to this. With her team, she focuses on the challenge of ensuring sufficient water of suitable quality to meet human demands and ensuring healthy ecosystems in our changing world.
Dr Jennifer Brandon – Dr Christopher Verlinden | A New Approach for Detecting Oceanic Microplastics in Real Time
Microplastics are tiny pollutants threatening our oceans and marine life. Current approaches to detect them are time-consuming and expensive. Oceanographers Dr Jennifer Brandon and Dr Christopher Verlinden from Applied Ocean Sciences (AOS) in the USA have developed a game-changing sensor that can swiftly detect and analyse microplastics, cutting through the existing time and cost barriers.
Dr Kenneth Poeppelmeier | Treasuring Trash: Chemical Advances in Upcycling Single-Use Plastics
The proliferation of single-use plastics, particularly polyethylene (PE) and polypropylene (PP), presents a significant environmental challenge. Of the 300-400 million tons of plastic produced annually, up to 80% is discarded, often ending up in landfills or polluting our oceans. This not only creates severe environmental hazards but also represents a massive waste of chemical energy, equivalent to approximately 3.5 billion barrels of oil yearly. In response to this challenge, Dr Kenneth Poeppelmeier of Northwestern University and his team are pioneering an innovative approach to upcycle these plastics using catalytic hydrogenolysis.
Dr Keith Walters | Rebuilding Oyster Reefs with Recycled Shells for Prey Protection
The worldwide loss of coastal oyster reefs negatively affects many organisms that rely on reefs for refuge from predators. Dr Keith Walters and his team at Coastal Carolina University created a series of reefs along the northern South Carolina shoreline using recycled oyster shells from local restaurants. Their investigations of differences in physical characteristics and predator-prey dynamics on newly created and existing natural reefs document that within a year, reef restoration provided a functional habitat for reef-reliant species, quickly reestablishing a key oyster reef ecosystem service.
The National Animal Nutrition Program | Environmental Impact of Food Animal Production
Animal food products are a vital component of the global diet, and the question of how to sustainably provide meat, milk, eggs, and fibre to an increasing world population has become a hot topic. Animal agriculture can impact the environment through pollution, greenhouse gas emissions, and the intensive use of resources such as energy and water. The National Animal Nutrition Program (NANP) Summit Committee gathered experts to share advancements in the sustainable farming of various animals used in food production and to explore the impact of climate change and the sustainability of animal agriculture.
The National Animal Nutrition Program | Advancing Sustainability in Animal Agriculture
Meat and dairy provide nutrients and proteins necessary for our survival, and remain key food sources in a rapidly growing global population. The National Animal Nutrition Program Summit Committee gathered global experts to share advancements in animal nutrition and sustainable farming to explore a range of topics related to sustainable agriculture, including emissions, feed sustainability, the nutritional benefits of animal products, laboratory-grown meat, and food security.
Dr William Robertson | On-site Septic Systems: The Sustainable Removal of Excess Nutrients
Sewage is usually treated in large, centralised facilities or local on-site septic systems. The latter can involve lower costs and energy requirements, although we must ensure that on-site options such as septic systems do not negatively impact the surrounding ecosystem. Dr William Robertson from the University of Waterloo, Canada, investigates the removal of polluting nutrients from wastewater before it is released into the environment. He has shown that a conventional septic system can provide long-term and sustainable contaminant removal from wastewater.
Dr Jenny Hand | Seasonal Particulate Matter Patterns Identify Emission Sources
Particulate matter in the atmosphere affects air quality, which can impact visibility, our health, and the climate. Since amendments to the 1990 Clean Air Act in the United States, decreases in particulates derived from anthropogenic emissions have been achieved. Dr Jenny Hand from the Cooperative Institute for Research in the Atmosphere has utilised a monitoring network across the United States to define seasonal and regional trends in atmospheric particulate matter from 2000 through 2021, identify their sources, and critically, make recommendations for future target emission reductions.
Dr Regina Katsman | Surface Wave Effects on Methane Gas Bubble Escape
Methane is a potent greenhouse gas that traps the sun’s heat. It can be added to the atmosphere when gas bubbles escape aquatic sediments and rise through an overlying water column. The controls on gas bubble escape and ascent are not fully understood and require further investigation. Dr Regina Katsman from the University of Haifa has conducted numerical modelling investigating the effects of varying water body conditions on the patterns of ascent of methane gas bubbles.
Stephen O’Byrne | Why Academic Research Has Done Little to Solve the Problems of Executive Pay
Competitive target pay is a basic principle of modern executive pay, embraced by corporate directors, compensation consultants and proxy advisors. Providing a high percent of pay in stock (or other incentive pay) is a second basic principle of modern executive pay. But when companies follow both of these principles, the result is a low correlation of cumulative pay and cumulative performance; in other words, little pay for performance. The fundamental problem is that translating target dollar pay into shares without adjusting for performance creates a systematic ‘performance penalty’. Poor performance – a declining stock price – is rewarded with more shares to provide target dollar pay, while good performance – a rising stock price – is penalised with a reduction in shares to keep from exceeding target dollar pay.
Nigel Jenner | Enhancing Apple Orchard Resilience
Climate change is making extreme weather more frequent in the UK, creating challenging conditions for farmers. Mr Nigel Jenner is Chief Technical Advisor at Avalon Fresh Limited and has a long history of advising farmers on how to get the best from their crops. He is leading a project to explore how novel microbial treatments can increase resilience in apple crops in an effort to reduce the substantial losses faced by the apple growers in Kent and Medway in the UK.
Dr Robert Larkin | Cultivating Change to Improve Soil Health and Increase Potato Yield
Environmental quality and food production are facing the pressing challenges of climate change and global population growth. Dr Robert Larkin from the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and a team of plant scientists developed and tested a range of crop management systems to help overcome these compounding challenges. Their work is improving soil health and increasing the yield of potato crops, contributing to the future food security of nations.
Dr Arne Stensvand | Thermotherapy: Effective Disease and Pest Management Without Chemicals
Dr Arne Stensvand and his team at the Norwegian Institute of Bioeconomy Research are developing physical methods of pest reduction in plants. The team is specifically interested in strawberry plants, for which pest management is vital for crop success. They are pioneering thermotherapy as a heat treatment method to provide an environmentally effective and economically sound non-chemical approach to pest management.
Dr. Daniel Canfield | Reprioritising Pollution Reduction in Florida’s Lakes
Florida’s landscape is dotted with thousands of lakes that reflect regional geology, topography and anthropogenic activities. Phosphorus and nitrogen are critical nutrients for maintaining the wide range of biological production expressed across Florida, but excessive inputs of these nutrients due to past human activities impair many waters. There has been a long history of work aiming to address associated water quality pressures, and Dr. Daniel Canfield at the University of Florida has been at the centre of these efforts for over 40 years. Now, with the correction of point-source nutrient inputs, Dr. Canfield proposes that holistic lake management, including the integration of in-lake management strategies with a focus on organic sediment removal, should be much more prominent on the US government’s agenda to provide faster restoration of stakeholders’ lake usability.
Dr Jon Tore Lieng | Dynamically Installed Anchors for Floating Offshore Turbines
Effectively harnessing offshore wind presents a valuable opportunity to increase energy supplies. Floating wind turbines present several advantages over traditional fixed turbines in more shallow waters. Dr Jon Tore Lieng from Deep Sea Anchors and colleagues have developed a type of dynamically installed anchor to hold the structures in place while reducing both the costs and complexity associated with installation where cohesive seabed sediments are realised.
Dr Lifei Wang | Can Species Distribution Models Inform Us About Future Ecosystems?
The world is buzzing with news about how human activities and climate shifts are reshaping our ecosystems. Have you ever wondered how life will adapt to this rapidly changing world? Ecologists might be able to predict how different species will live in future using computer simulations. Dr Lifei Wang at the University of Toronto Scarborough investigates how different stimulations work under varying conditions to provide new insights into what may lie ahead.
Dr Timothy Beers | Mapping the Galaxy’s Stellar Populations Using Large Photometric and Astrometric Surveys
Astronomers often use spectroscopic (electromagnetic radiation) data and astrometric (motion and positional) data to develop working models describing our Galaxy. Dr Timothy Beers from the University of Notre Dame and his collaborators in Korea and China combined large photometric (visible light) surveys and astrometric data to create multidimensional maps of a large part of the Galaxy. By highlighting significant inhomogeneities in stellar-chemical compositions, motions, and spatial distributions, Dr Beers and his colleagues provide valuable insights into how we can advance our understanding of the formation and evolution of our Galaxy.
Professor Gary Yohe | Navigating Climate Change: The Impactful Contributions of Gary Yohe
Professor Gary Yohe is a distinguished environmental economist whose work has been pivotal in shaping our understanding of climate change impacts, adaptation strategies, and policy frameworks. His interdisciplinary approach combines economics with environmental science, offering nuanced insights into global warming and its multifaceted impacts on natural and human systems. Professor Yohe equips us with the knowledge and strategies needed to navigate the complex and pressing challenges posed by climate change.
Dr Sebastian Fraune | Microbiota: Fast-tracking Adaptation to Rapidly Changing Environments
As climate change continues at an unprecedented pace, the processes of natural selection and genetic mutation can no longer fully explain how some organisms adapt to their rapidly changing environments. Dr Sebastian Fraune from Heinrich-Heine University and an international team of researchers are the first to demonstrate a causal relationship between changes in the microbiome and changes in thermal tolerance. They propose that microbiota-mediated transgenerational acclimatisation can account for how animals adapt to their environments in much shorter periods of time than classical theory would predict.
Dr Attila Borovics | Mitigating Climate Change: The ForestLab Project
Our forests provide important recreational, social, ecological and economic functions. The ForestLab project, led by Dr Attila Borovics at the University of Sopron in Hungary, has been set up to simultaneously protect and utilise this pre-cious resource. Their recent findings point to the importance of addressing ‘old wood’, that is, unused wood stock that currently exists in Hungarian forests and adopting technologies for forest management in the near future.
Dr Adrienne Erickcek | Probing the Universe’s First Second with Dark Matter
Dr Adrienne Erickcek at the University of North Carolina is working with colleagues to provide new insights into this mysterious substance. The team is currently investigating how the expansion history of the early Universe affects how dark matter is distributed throughout the cosmos and the implications these structures have for the origins of dark matter itself.
Dr Sam Poppe | Nowe podejście do zrozumienia aktywności wulkanicznej na ciałach planetarnych
Zrozumienie, w jaki sposób podpowierzchniowa aktywność magmowa wpływa na skorupę ziemską, ma kluczowe znaczenie dla dokładnego prognozowania erupcji wulkanów. Dr Sam Poppe i jego zespół z Centrum Badań Kosmicznych PAN opracowali wielometodyczne podejście łączące skalowane modele laboratoryjne, badania terenowe, obserwacje innych ciał planetarnych i modele numeryczne w celu określenia wpływu dynamiki wypierania magmy na skorupy ciał planetarnych, takich jak Ziemia, Księżyc i Mars. Dzięki lepszemu zrozumieniu mechaniki wulkanów, ich praca może poprawić przewidywanie erupcji na Ziemi i zrozumienie przeszłej aktywności wulkanicznej na otaczających nas księżycach i planetach.
Dr Sam Poppe | New Approaches to Understanding Volcanic Activity on Planetary Bodies
Understanding how subsurface magmatic activity affects the Earth’s crust is crucial to accurately forecasting volcano eruptions. Dr Sam Poppe and his team at the Space Research Centre of the Polish Academy of Sciences have developed a multimethod approach combining scaled laboratory models, fieldwork, observations of other planetary bodies, and numerical models to determine the effect of magma emplacement dynamics on the crusts of planetary bodies like the Earth, Moon, and Mars. By progressing the understanding of the mechanics of volcanoes, their work can improve the prediction of eruptions on Earth and understanding of past volcanic activity on our surrounding moons and planets.
Dr Merari Feliciano-Rivera | Propagating a New Generation of Yam in Puerto Rico
Yams are an essential nutritional crop in Puerto Rico, but unfortunately, years of poor management have left farmers with a lack of good-quality seeds from which to grow new plants. Dr Merari Feliciano-Rivera from the University of Puerto Rico at Mayagüez has been working with a team of scientists and students to address this problem and propagate a new generation of disease-free seeds.
Dr Merari Feliciano-Rivera | Detecting Threats to Better Protect Crops in Puerto Rico
Foods rich in starch, such as bananas, yams, and plantains, are among the most important crops grown in Puerto Rico, contributing significantly to the agricultural economy. However, the diseases affecting these plants significantly threaten the livelihoods of farmers and producers, as well as the island’s food security. Dr Merari Feliciano-Rivera from the University of Puerto Rico has been working with colleagues to find faster and more robust methods of identifying diseases before they can take hold and cause widespread crop damage.
Professor Richard Collins – Dr Jintai Li | Project Super Soaker: Investigating High-altitude Polar Ice Clouds with Rockets
Phenomena in the upper atmosphere are difficult to study for several reasons – some rarely form, others are difficult to see, and all are incredibly high up. Polar Mesospheric Clouds (PMCs) are no exception, forming at around 80 kilometres up into the sky, only under specific atmospheric conditions, and only visible to the naked eye during twilight. PMCs are also called noctilucent or ‘night-shining’ clouds, as they appear to glow in the summer nighttime sky. Professor Richard Collins from the University of Alaska Fairbanks is using rockets to seed these clouds, allowing better investigations of both PMCs and the effects of space traffic on our upper atmosphere.
Dr Valentina Pivotti | Studying the El Niño Southern Oscillation Across Decades
The El Niño Southern Oscillation (ENSO) is a naturally occurring climate phenomenon that has significant consequences for global weather patterns. Therefore, understanding the mechanisms that drive ENSO is extremely important to improve the resilience of the people and ecosystems impacted by these events. Using climate data spanning 140 years, Dr Valentina Pivotti of Malmö University is investigating the precursors to ENSO events. Understanding the underlying mechanisms is critical for improving climate models and predicting future ENSO events, especially in combination with climate change.
Dr Alex Simpson | Between the River and the Deep Blue Sea
Despite living on a very watery planet, there is a lot we do not understand about rivers, seas and oceans. One particular zone of interest, the place where rivers and oceans meet, remains mysterious to scientists. Dr Alex Simpson, from Scripps Institution of Oceanography, University of California San Diego, has worked with a team of scientists to look more closely into the dynamics of what happens to fresh river water when it reaches the salty ocean, and how this can affect river estuaries and nearby coastal areas.
Dr Micah Russell | Underneath the Eaves: Estimating Canopy Snow Interception
In many cold regions of the world, snowfall is the primary form of water input to the environment. To a greater degree than rain, snowfall can be prevented from reaching the ground through interception by the canopies of trees, meaning that in heavily forested areas, very little snow reaches the ground immediately. Dr Micah Russell from Western Colorado University and his colleagues have developed a new method using lasers to determine the volume of snow intercepted by forest canopies to help better understand the hydrology of these regions.