Earth, Environmental & Agricultural Sciences

Dr Prajvala Kurtakoti – Simulating Circulations in Earth’s Coldest Seas

Dr Prajvala Kurtakoti – Simulating Circulations in Earth’s Coldest Seas

Climate models typically use mathematical equations that govern geophysical fluid dynamics to describe the behaviours of the ocean, atmosphere, sea ice and land ice. Computer simulations that use climate models are an essential tool for capturing the complex, interacting motions found throughout Earth’s oceans and atmosphere. Using some of the most advanced simulation techniques available to date, Dr Prajvala Kurtakoti at Los Alamos National Laboratory aims to learn more about how these processes occur within the seas of Earth’s polar regions. Her team’s results are shedding new light on the intricate connections between the oceans and atmosphere, and how these systems are likely to change as the climate warms.

Dr Alexandra (Sasha) Pavlova | Professor Paul Sunnucks – Genetic Rescue Saves Species from Extinction

Dr Alexandra (Sasha) Pavlova | Professor Paul Sunnucks – Genetic Rescue Saves Species from Extinction

Human impacts on plant and animal populations can be striking. Landscape-level transformation of pristine habitats means less room for plants and animals and the inevitable decline and extinction of many species. However, human impacts can also act on threatened species in less obvious ways, including on their genomes. Because of shrinking populations, many plants and animals are highly inbred, tipping the scales in favour of extinction. Dr Alexandra (Sasha) Pavlova and Professor Paul Sunnucks at Monash University, Australia, are at the forefront of applied research that seeks to increase genetic diversity to help populations rebound.

Dr Hu Yang – Understanding Circulation Changes in Earth’s Oceans and Atmosphere

Dr Hu Yang – Understanding Circulation Changes in Earth’s Oceans and Atmosphere

Large-scale circulation patterns can be found throughout Earth’s oceans and atmosphere, and play a crucial role in maintaining the stability of regional climates. As the climate warms, researchers find that these patterns are experiencing a fundamental transformation. Using a combination of satellite observations and computer models, Dr Hu Yang at the Alfred Wegener Institute, identifies and explains the mechanisms of these changes. His study offers crucial insights into how both human populations and natural ecosystems will be affected by these transformations – and how they will need to adapt to cope with them.

The United States National Vegetation Classification: Creating A Common Language To Classify The Nation’s Vegetation

The United States National Vegetation Classification: Creating A Common Language To Classify The Nation’s Vegetation

In every introductory biology class, students learn the classification system used to catalogue plants, animals, fungi, and other organisms. In order of increasing specificity, the major levels of classification are: domain, kingdom, phylum, class, order, family, genus, and species. Global adoption of this system allows us to create an inventory of the world’s species diversity. For instance, we classify the Redwood tree of the US Pacific coast as the species sempervirens in the genus Sequoia, or Sequoia sempervirens. Until recently, however, there was no comparable standard available in the United States to classify the nation’s diverse types of vegetation – the various combinations of species, growth forms, and ecological factors that occur in certain regions. Instead, many land-management groups created their own classifications, hindering communication and collaboration. To address this issue, stakeholders established the United States National Vegetation Classification (USNVC).

Dr Ülo Mander – Tracking Greenhouse Gas Fluxes in Land-based Ecosystems

Dr Ülo Mander – Tracking Greenhouse Gas Fluxes in Land-based Ecosystems

Land-based, or ‘terrestrial’, ecosystems can act as both a sink and a source of greenhouse gases. An active field of research centres on understanding which environmental parameters turn a carbon sink into a carbon source. Dr Ülo Mander from the University of Tartu in Estonia concentrates his work on predicting greenhouse gas fluxes from terrestrial ecosystems and monitoring how environmental conditions, such as soil moisture and temperature, influence emissions. He aims to use his research to help resolve numerous environmental issues, including climate change.

Dr Florence Magnin – Linking Rockfalls to Thawing Mountain Permafrost

Dr Florence Magnin – Linking Rockfalls to Thawing Mountain Permafrost

Permafrost is key to maintaining the stability of steep mountain slopes. Yet as the climate warms, this frozen ground is becoming increasingly prone to thawing. In some cases, these events can trigger cascades of loose rock, with potentially devastating consequences for surrounding communities. Using a combination of computer modelling, and daring field experiments, Dr Florence Magnin at the Laboratory of Environments, Dynamics and Mountain Territories (EDYTEM) aims to better predict when and where these rockfalls are likely to occur, and how the state of mountain permafrost will evolve in the future.

Laura Arneson Horn – Planting Hedgerows to Boost Biodiversity and Protect Crops

Laura Arneson Horn – Planting Hedgerows to Boost Biodiversity and Protect Crops

From a bird’s eye view, farmlands are conspicuous. Unlike wildlands, swaths of agricultural fields form neat squares, fitting together in a landscape-sized jigsaw puzzle. The edges of the puzzle pieces stand out most: dark emerald lines contrasting against the light green interior crisscross across the land. These narrow, vegetated strips – or hedgerows – have been planted for centuries but are receiving renewed interest. Often referred to as ‘living fences’, hedgerows are buzzing communities that provide various ecosystem services. Laura Arneson Horn, the owner of Wild Bee Project in Salt Lake City, works to establish hedgerows and promote their positive impacts on native pollinators and other beneficial insects.

Dr Xander Wang – Adapting to Climate Change Using Regional Models

Dr Xander Wang – Adapting to Climate Change Using Regional Models

As the impacts of climate change become increasingly obvious worldwide, focused efforts to mitigate its worst effects are becoming more urgent. Through his research, Dr Xander Wang at the University of Prince Edward Island aims to innovate the computer models used to predict these future changes on smaller, regional scales. His team’s work is making important strides towards an advanced predictive toolset, which policymakers could use to make the best possible decisions about how to protect local populations from future climate-related disasters.

Dr Timothy Logan – Assessing How Aerosols Impact Cloud Formation

Dr Timothy Logan – Assessing How Aerosols Impact Cloud Formation

As they enter the atmosphere, tiny particles emitted by the burning of biomass or fossil fuels can heavily influence the formation of clouds. Yet due to human influence, the roles that these aerosols play in the process are still poorly understood by climate scientists. Using a combination of ground- and space-based measurements, along with advanced computer simulations, Dr Timothy Logan at Texas A&M University has gained important new insights into the atmospheric impacts of aerosols, and how emissions from both wildfires and human activities are having tangible effects on the weather.

Dr Andrew Metcalf – Exploring Atmospheric Soot to Protect People and the Planet

Dr Andrew Metcalf – Exploring Atmospheric Soot to Protect People and the Planet

From wildfires to cargo ships, soot particles can originate from many different sources. Once emitted, these particles can be easily spread throughout Earth’s atmosphere. Dr Andrew Metcalf at Clemson University, and his graduate students Nilima Sarwar and Walt Williams, use advanced aircraft observations to investigate how the diverse characteristics of soot can be influenced by their sources, and assess their subsequent influence on air quality and cloud formation. Their work is now helping researchers to better predict the coming impacts of climate change, and to inform urgently-needed efforts to reduce our emissions.

Dr Marolo Alfaro – Protecting Arctic Infrastructure as the Permafrost Degrades

Dr Marolo Alfaro – Protecting Arctic Infrastructure as the Permafrost Degrades

Roads, bridges, and airports are now being built all across the Arctic. However, as this happens, the future of the sturdy permafrost these structures are built upon is looking increasingly uncertain. In his research, Dr Marolo Alfaro at the University of Manitoba uses both computer modelling and real-world sensing to assess the impact that the Arctic’s warming climate is having on this infrastructure. Starting from analysis of a newly-constructed highway in Canada’s Northwest Territories, his team’s efforts could soon provide local communities with vital guidance as to how their infrastructure should be maintained and protected.

The Association for Women Geoscientists

The Association for Women Geoscientists

The Association for Women Geoscientists (AWG) is an international organisation devoted to increasing the participation of women in geoscience, and inspiring girls and young women to pursue careers in geoscience-related disciplines. In this exclusive interview, we have had the pleasure of speaking with Dr Noelia Beatriz Carmona, AWG’s past president, who describes how the Association supports the professional development of its members, provides education and outreach to young women and girls, and encourages the participation of women in geoscience.

The Australian Meteorological and Oceanographic Society

The Australian Meteorological and Oceanographic Society

The Australian Meteorological and Oceanographic Society (AMOS) is an independent learned society representing over 500 atmospheric and oceanographic scientists. Its vision is to advance the scientific understanding of the atmosphere, oceans and climate system, along with their socioeconomic and ecological impacts, and promote applications of this understanding for the benefit of all Australians. In this exclusive interview, we speak with Angela Maharaj, President of AMOS, who describes how the Society advances scientific research and communicates the latest climate science to the public and policy-makers.

Dr Xiaochuan Ma – Exploring the Evolution of Seafloor Sand Dunes

Dr Xiaochuan Ma – Exploring the Evolution of Seafloor Sand Dunes

Marine sand is both a vital natural habitat and an essential resource. However, while desert dunes are comparatively easy to observe, their oceanic counterparts are still poorly understood. Dr Xiaochuan Ma and his colleagues at the Chinese Academy of Sciences in Qingdao are mapping the shifting sands of the seafloor and measuring their movement. By investigating how seafloor dunes respond to waves, tides, and typhoons, they can help decision-makers protect and manage this critical resource.

Protecting Palau’s Food Security and Marine Ecology Using Satellite Technology

Protecting Palau’s Food Security and Marine Ecology Using Satellite Technology

Palau, a remote group of islands in the Pacific Ocean, relies heavily on wild fish to feed its citizens and support its economy. With a growing population and thriving tourism industry, the country cannot afford a crash in catch size. However, climate change is altering the ecosystems of Palau’s fishing waters, threatening harvests of important fish species. To improve the country’s food security and accelerate the achievement of the UN’s Sustainable Development Goals, the Palauan Government has teamed up with the Nature Conservancy to build a sustainable aquaculture community on the islands, with support from NASA. Using NASA satellite observations, the collaboration helps aquaculture farmers to find optimum locations to farm fish and shellfish, allowing them to produce an abundance of seafood while protecting the surrounding marine environment.

Dr Danny Haelewaters – Shining New Light on the Complex World of Fungi

Dr Danny Haelewaters – Shining New Light on the Complex World of Fungi

From microscopic, single-celled yeasts to a mycelium that can cover many acres underground, fungi represent a diverse array of organisms. However, despite their global distribution, diverse growth forms, and complex interactions with other organisms, we still know very little about fungi. This lack of knowledge is reflected in the numbers: although it is estimated that there are between 1.5 and 6 million species of fungi, only around 138,000 have been described. Dr Danny Haelewaters of Ghent University is contributing to closing the gap in our understanding. His team’s research explores the diversity of fungi, in addition to their evolutionary history and ecological interactions with other groups of organisms.

Dr Chao Li – New Approaches for Increasing Woodland Growth

Dr Chao Li – New Approaches for Increasing Woodland Growth

Understanding the factors that affect woodland growth can help researchers to develop sustainable forest management practices. This will ensure that society’s needs for forest products such as timber and pulp can be met, while also increasing carbon capture and providing important ecosystem services. Previous studies attempting to determine methods for achieving enhanced growth are inconsistent, leading to misconceptions among researchers and forest managers. Dr Chao Li and his team at the Canadian Forest Service aim to solve this problem by showing that a phenomenon called ‘compensatory growth’ can increase overall forest growth in the long-term. Through providing an enhanced understanding of compensatory growth and the factors affecting it, the forestry industry will be better equipped to meet increasing market demands, while also protecting the environment for future generations.

Dr Egbert Giles Leigh, Jr – How Ecosystems are Built: Competition and Cooperation in Evolution

Dr Egbert Giles Leigh, Jr – How Ecosystems are Built: Competition and Cooperation in Evolution

Despite the old adage ‘nice guys finish last’, cooperation is common in life – from the scale of genes or cells through to entire societies. Although these two ideas seem to contradict each other, Dr Egbert Giles Leigh Jr has demonstrated throughout his career at the Smithsonian Tropical Research Institute in Panama that working together has been the key to the success of multicellular life. Here, he explains his view of how competition and cooperation both played essential roles in bringing forth productive, diverse ecosystems.

Dr Kim de Mutsert – Identifying Effective Strategies to Protect Louisiana’s Precious Wetlands

Dr Kim de Mutsert – Identifying Effective Strategies to Protect Louisiana’s Precious Wetlands

The Louisiana coastal zone is the fastest-eroding wetland in the US. This region is home to a variety of vitally important fish species for local fishing industry and ecosystems, which are currently under threat. Conservation schemes have been proposed under the 2017 Louisiana Coastal Master Plan in an attempt to preserve coastal habitats and their inhabitants. Dr Kim de Mutsert of the University of Southern Mississippi and her colleagues use simulations to reveal how different management strategies will affect fish and shellfish up to 50 years from now.

Professor Enzo Mantovani – Understanding Mediterranean Tectonics to Recognise Earthquake-prone Zones

Professor Enzo Mantovani – Understanding Mediterranean Tectonics to Recognise Earthquake-prone Zones

Precisely predicting when earthquakes will happen is still a distant goal. However, local authorities could reduce the damage caused by such disasters if scientists could identify zones that are most likely to be affected by earthquakes. Gaining this information requires an in-depth knowledge of the ongoing tectonic situation in a given area. In the Mediterranean region, this knowledge is surrounded by considerable uncertainty, as different researchers have different hypotheses to explain tectonic processes in this area. Professor Enzo Mantovani and his team at the University of Siena, Italy, propose a new geodynamic interpretation that offers a plausible explanation for all major tectonic features observed in this area. Using their hypothesis, along with the seismic history of the region, the team has recognised a connection between the short-term development of tectonic processes and the distribution of major earthquakes.

Dr John Barnes – Monitoring Atmospheric Pollution with Laser Imaging

Dr John Barnes – Monitoring Atmospheric Pollution with Laser Imaging

Lidar (Light Detection and Ranging) is a laser-based remote sensing tool that can measure the concentration of small particles, called aerosols, in the atmosphere. Monitoring aerosols is crucial for climate modelling, air quality measurements, and understanding the health impacts of atmospheric pollution. However, existing lidar systems require sophisticated and expensive equipment and are usually deployed by research technicians. They also have trouble measuring atmospheric pollutants near the ground, where they impact human health. Scientist Dr John Barnes at NOAA in Boulder, Colorado, and his colleagues have developed an inexpensive and straightforward commercial lidar solution using widely available camera and optical equipment.

Dr Steve E. Hrudey – Understanding and Improving the Provision of Safe Drinking Water

Dr Steve E. Hrudey – Understanding and Improving the Provision of Safe Drinking Water

Water is vital to sustaining human life and the contamination of drinking water can lead to disease and death. Dr Steve E. Hrudey from the University of Alberta’s Division of Analytical & Environmental Toxicology has identified the challenges of providing safe drinking water and clarified misconceptions regarding threats to drinking water safety. Based on his research findings, he has provided critical recommendations for the provision of safe drinking water to protect public health.

Dr Francesco Pausata – Exploring the Sahara Desert’s Past to Understand Its Future

Dr Francesco Pausata – Exploring the Sahara Desert’s Past to Understand Its Future

The Sahara Desert in Africa is one of the driest places on Earth. Because of its dry conditions, fine sand particles from the desert can easily become airborne, leading to dust emissions that affect the global climate. However, between 11,000 and 5,000 years ago, this region experienced wetter conditions, known as African humid period, causing reduced dust and a dramatic greening of the land. In the near future, human-induced climate change could dramatically alter rainfall patterns in the Sahara, causing reductions in dust emissions that may further impact the global climate. By examining past humid periods, Dr Francesco Pausata and his colleagues at the University of Quebec in Montreal aim to understand potential future changes.

Professor Jim Nelson – Predicting Disasters Using Global Water Intelligence

Professor Jim Nelson – Predicting Disasters Using Global Water Intelligence

Accurate knowledge of the water cycle is essential for predicting disasters such as floods and droughts. However, it’s not easy to obtain good information from traditional weather and water forecasts. The Group on Earth Observations Global Water Sustainability initiative (GEOGloWS) provides hydrologic forecasts through an accessible web service to assist local water users. Partnering with water scientists worldwide, Professor Jim Nelson of Brigham Young University worked with the European Centre for Medium-Range Weather Forecasts to develop a global streamflow service. This service provides local communities with actionable water intelligence, enabling them to focus on solutions to water-related problems.

Dr Michael Humber – NASA Harvest: Monitoring Food Security from Space During the COVID-19 Pandemic

Dr Michael Humber – NASA Harvest: Monitoring Food Security from Space During the COVID-19 Pandemic

In the face of the combined challenges of climate change and COVID-19, reliable access to accurate information about crop health has never been more crucial. Dr Michael Humber at the University of Maryland is the Data Lead of the NASA Harvest project – a global collaboration of researchers from many different backgrounds, who are aiming to provide this data using advanced satellite-based technologies. His team’s work has already had an important impact on systems that warn farmers of likely crop failures before they occur, and could be vital for ensuring global food security in the coming decades.

Dr Gordon ‘Oz’ Osinski – From Destruction to Creation: Understanding Meteorite Impact Craters

Dr Gordon ‘Oz’ Osinski – From Destruction to Creation: Understanding Meteorite Impact Craters

Ever since the planets first formed, they have been bombarded with space rocks. Asteroid and cometary collisions are so forceful that planetary surfaces fracture and melt beneath them, leaving behind huge craters. These impact events have played an important role in our planet’s history, by shaping the geological landscape, producing valuable minerals, and affecting the evolution of life. Dr Gordon ‘Oz’ Osinski from the University of Western Ontario, Canada, aims to understand this fundamental process on Earth, Mars and the Moon – with important implications for space exploration, mining, and for understanding the origins of life.

Dr Manfred Vogt – Measuring Meteorites to Reveal the Origins of the Earth

Dr Manfred Vogt – Measuring Meteorites to Reveal the Origins of the Earth

The planet we call home has a 4.5-billion-year history, but humans have only been around for a tiny fraction of this time. To discover what happened before life arose on Earth, and even before Earth’s formation, scientists can study objects sent from space – from icy comets and rocky asteroids to tiny particles of interstellar dust. Early in Earth’s history, primordial gases became trapped deep in the planet’s interior. By determining how they were trapped and where they might be stored, Dr Manfred Vogt and his research group at the Ruprecht-Karls-University of Heidelberg are shedding new light on Earth’s origins.

Dr Alexis Gilbert – Tracing the History of Naturally Occurring Molecules

Dr Alexis Gilbert – Tracing the History of Naturally Occurring Molecules

Understanding the history of molecules is invaluable in numerous applications, such as food authentication and identifying the source of natural gas. Based at the Tokyo Institute of Technology in Japan, Dr Alexis Gilbert and his team are developing analytical tools that can be used to reveal the origin and history of molecules. Their work has already been applied to several areas, including the detection of fake alcohol and environmental research.

Dr Conrad Labandeira – Predicting the Future of Insects by Studying Their Past

Dr Conrad Labandeira – Predicting the Future of Insects by Studying Their Past

Insects are one of the most important – and ancient – groups of organisms. They were around long before dinosaurs roamed the planet and before plants evolved flowers. Fossils from millions of years ago are a priceless record of ancient insects, helping scientists to piece together the evolutionary history of modern species. Insects contained in amber and sedimentary deposits can give us valuable clues about their life histories and ecology. Smithsonian National Museum of Natural History curator and researcher, Dr Conrad Labandeira, has been examining the insect fossil record to answer important questions with implications for today’s living species.

Dr Susan Strahan | Dan Smale – Predicting the Health of the Ozone Layer to Ensure its Protection

Dr Susan Strahan | Dan Smale – Predicting the Health of the Ozone Layer to Ensure its Protection

The phasing out of ozone-depleting gases has set the ozone layer on the road to recovery. However, atmospheric changes wrought by rising greenhouse gas levels may represent a new threat to Earth’s protective shield. Dr Susan Strahan from the NASA Goddard Space Flight Center and Dan Smale from the National Institute of Water and Atmospheric Research (NIWA) in New Zealand combine atmospheric measurements with simulations to track and explain recent changes to the ozone layer, towards ensuring its protection into the future.

Dr Li-Qing Jiang – Mapping the Impact of Carbon Emissions on the Oceans

Dr Li-Qing Jiang – Mapping the Impact of Carbon Emissions on the Oceans

The climate crisis and the chemistry of the oceans are inextricably connected. The oceans have absorbed close to a third of our carbon dioxide emissions since the beginning of the Industrial Revolution, leading to an increasingly acidic environment and making it more difficult for organisms such as corals, molluscs, and plankton to form their shells and skeletons. Mapping future changes in ocean chemistry is the first step in developing mitigation strategies. However, our knowledge of the future state of the oceans relies on mathematical models that are often not calibrated with modern ship-based observations. Dr Li-Qing Jiang of the University of Maryland and his collaborators are improving ocean acidification predictions by coupling millions of past and present ocean chemistry measurements with the best model projections at each location of the global ocean.

Dr Christopher Burn – Understanding Permafrost Responses to Climate Change

Dr Christopher Burn – Understanding Permafrost Responses to Climate Change

It is not just the polar ice caps that are melting. On our warming planet, the ice buried within the layers of ground around the Arctic Circle is thawing, irreversibly changing these spectacular landscapes and posing risks to the communities that call these areas home. Understanding the dynamics of ‘permafrost’ is vital for predicting its future responses to climate change. The long-term research of permafrost expert Dr Christopher Burn, from the Department of Geography and Environmental Studies at Carleton University, Canada, is integral to shaping our collective knowledge of these icy environments.