Dr Jon Tore Lieng | Dynamically Installed Anchors for Floating Offshore Turbines
Effectively harnessing offshore wind presents a valuable opportunity to increase energy supplies. Floating wind turbines present several advantages over traditional fixed turbines in more shallow waters. Dr Jon Tore Lieng from Deep Sea Anchors and colleagues have developed a type of dynamically installed anchor to hold the structures in place while reducing both the costs and complexity associated with installation where cohesive seabed sediments are realised.
Why Place Wind Turbines Offshore?
The wind has been used as an energy source for hundreds of years, captured in sails to drive boats across oceans and caught in the blades of windmills, grinding grain for flour. In the current day, efforts worldwide are focused on the development of ‘offshore’ (typically sea-based) wind turbines as an energy source. There are several advantages to having wind turbines placed offshore rather than on land. These include having a lesser impact on the land, animals, and people living there, as well as the benefit of capturing stronger winds offshore, maximising energy output.
Predominantly, established wind turbines are held in place using ‘bottom-fixed’ foundations, whereby the structures are attached to the seabed. A key limitation to this approach is that its use is restricted to shallow waters, leaving vast areas of the Earth’s waters untapped.
Floating wind turbines are a more recent innovation. As the name suggests, the turbines are mounted on floating structures, which are moored and anchored rather than directly fixed to the seabed. The first large, industrial-scale floating wind farm (HiPR-Wind) was established in Scotland in 2015. Ongoing and future projects have even more ambitious plans to take advantage of deeper and more challenging waters and to put greater numbers of wind turbines in place.

Weighed Down
Dr Jon Tore Lieng of Deep Sea Anchors in Trondheim, Norway, is an expert in anchoring systems for floating offshore structures such as oil and gas platforms, drilling rigs, and wind farms. He explains that various anchor designs for floating wind turbines are available, each with specific installation requirements. These include drag embedment anchors such as fluke anchors, where the anchor is dragged across the seabed until it realises sufficient resistance. These are extensively used with temporary installations but may also be used for single-line permanent mooring. Since they are drag-embedded, they need to be proof-loaded up to design requirements in that the anchor’s precise embedment depth is not known. Proof loading may require several vessels and or expensive marine operations and equipment to fulfil the prescribed loading capacities.
Another design is a suction anchor, where a cylinder, closed at the top end, is lowered onto the seabed where it self-penetrates to a certain depth and then suction embedded (therefore coined suction anchor) by pumping out the enclosed water. Suction anchors may have up to three mooring lines attached (anchor sharing), normally require large crane vessels and may take from six to twelve hours to install, making marine operations relatively expensive. Alternatively, a driven pile can be used, which involves the installation of a steel pipe that is driven into the seabed to act as an anchor point. However, deep waters, say over 150 metres, require lengthy and massive hydraulic hoses and large hydraulic hammers, which require ditto large installation vessels and equipment. Whilst suction and driven pile anchors are undoubtedly strong, the installation is evidently not only complex and time-consuming but also costly.
Dynamically Installed Anchors
Dr Lieng is pioneering novel approaches to reduce the complexity and cost of installing anchoring systems for floating wind farms and to support the move of oil and gas exploration into deeper waters. To this end, he favours the concept of Dynamically Installed Anchors (also known as Gravity Installed Anchors), which is used where the seabed soil sediments consist of cohesive material such as clay or silt. These anchors are dropped from a certain height above the seabed, i.e., typically from a height of 70–80 metres, allowing gravitational forces to effectively embed them in the seabed some 20–30 metres, depending on the strength of the seabed sediments. This makes their installation much easier to accomplish than for other anchor designs, especially in deep or challenging waters.
His extensively tested Deep Penetrating Anchor (DPA) is one type of Dynamically Installed Anchor. It is similar in shape to a dart and will vary in size and mass depending on capacity design requirements. This size, shape, and weight ensure that when the anchor is released, it builds up enough momentum to penetrate deep into the seabed. Capacities in excess of 1,000 tonnes can be realised, which is sufficient for large 15-megawatt wind turbines. The DPA is approved by Det Norske Veritas (which sets standards for offshore structures) and is a qualified technology within Equinor, an offshore wind developer and operator that has supported the development of the concept.

To ensure that these anchors are installed as designed, a monitoring unit is mounted on the side of the anchor. This unit is designed to be recoverable and provides the team on the surface with information about how the anchor descended through the water – recording any pitch or yaw, velocity, anchor verticality and acquired penetration depth. From these data, the team on the surface can document if the anchor is installed as designed, i.e., has reached minimum penetration and verticality. Interestingly, the condition of the seabed that the anchor penetrates is less important than the geometry and mass of the anchor. Dr Lieng tested his design in two regions with differing seabed soil shear strength and found that the theoretical pullout capacities were very similar for both regions.
One of the most significant benefits of this anchor design is the installation simplicity. Dr Lieng explains that this means that the requirement for very large construction vessels is reduced as smaller vessels of type Anchor Handling Tugs equipped with Anchor Recovery Frames (ARF) will be able to install DPAs with relative ease. Although it has not yet been demonstrated in practice, it may theoretically be possible to attach two mooring lines to a DPA during installation. By having two anchor lines attached to each DPA for anchor sharing, savings with regard to manufacturing and installation costs are increased.
The DPA designed by Dr Lieng and his team will allow offshore wind farms to be built in places that were previously economically unviable or physically too challenging. This opens up huge amounts of wind energy that can now be effectively harnessed while negating the need for the construction of large windfarms, either on or close to land.
SHARE
DOWNLOAD E-BOOK
REFERENCE
https://doi.org/10.33548/SCIENTIA1032
MEET THE RESEARCHER

Jon Tore Lieng
Chief Executive Officer
Deep Sea Anchors AS
Trondheim
Norway
Dr Jon Tore Lieng gained his degree in civil engineering in 1977 at the Norwegian Institute of Technology at the University of Trondheim. Afterwards, he worked for SINTEF Civil and Environmental Engineering in Trondheim. During his tenure there, he worked on a wide range of projects and, in 1988, achieved his doctorate in Engineering from the University of Trondheim. Dr Lieng is the managing director of GeoProbing Technology AS and chief executive officer of Deep Sea Anchors AS, positions he has held since 1997 and 2012, respectively. Dr Lieng is a member of several societies, including the Norwegian Petroleum Society, the Norwegian Geotechnical Society, the European Association of Geoscientists and Engineers, and the Norwegian Centres of Expertise Instrumentation. Dr Lieng is fluent in both Norwegian and English.
CONTACT
E: jon.lieng@deepseaanchors.com
W: https://www.deepseaanchors.com/
KEY COLLABORATORS
Equinor, Global Maritime, Norwegian Offshore Wind
FUNDING
Norwegian Research Council, BOA Offshore, REINERTSEN Engineering, Statoil, Equinor
FURTHER READING
JT Lieng, H Stürm, KK Hasselø, Dynamically installed anchors for floating offshore wind turbines, Ocean Engineering, 2022, 266(5), 112789. DOI: 10.1016/j.oceaneng.2022.112789

REPUBLISH OUR ARTICLES
We encourage all formats of sharing and republishing of our articles. Whether you want to host on your website, publication or blog, we welcome this. Find out more
Creative Commons Licence (CC BY 4.0)
This work is licensed under a Creative Commons Attribution 4.0 International License. 
What does this mean?
Share: You can copy and redistribute the material in any medium or format
Adapt: You can change, and build upon the material for any purpose, even commercially.
Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
SUBSCRIBE NOW
Follow Us
MORE ARTICLES YOU MAY LIKE
Dr Kenric Nelson | Modelling the Extreme: A New Technique for Training Risk-Aware Artificial Intelligence
Category 5 hurricanes, financial crashes, and global pandemics are just a few examples of rare events whose high risks necessitate understanding and mitigation. Developments in artificial intelligence (AI) could go a long way towards improving our ability to model and mitigate the impacts of such extreme events, but current training methods are often unable to deal effectively with outliers in data – which is exactly what extreme events are. If outliers are present in training data, they skew the AI’s expectations, but if they’re omitted entirely, models will wrongly assume they never occur. To address this shortcoming, the Photrek team, led by Dr Kenric Nelson, has developed a new training technique to design more robust AI systems that can cope with rare, extreme events.
Nick Martin | The Future of Floods: Smarter Risk Tools for Sustainable Water Management in a Changing Climate
Sustainable decision-making requires balancing the costs borne by today’s society with those that will fall on future generations. Climate change is intensifying extreme weather, making floods more severe because a warmer atmosphere can hold and deliver a larger volume of water as precipitation. It may also be the case that severe floods are becoming more frequent as drought becomes more frequent, average conditions rarely occur, and weather oscillates between short duration wet and long duration dry extremes. Worryingly, traditional infrastructure (often designed using outdated, backward-looking models) risks failing under these evolving conditions.
Nick Martin from Vodanube LLC, and his colleagues have applied Probabilistic Risk Assessment (PRA) to flood inundation. Their research optimises current adaptation and future mitigation strategies, even while acknowledging PRA’s limitations. The team demonstrates how this approach can guide more resilient water resource management, and highlights opportunities for further study.
Revolutionising Chemical Safety: How AI Could Replace Animal Testing
Modern life exposes us to a staggering array of synthetic substances—over 350,000 chemicals are registered for use worldwide, found in products as diverse as pesticides, plastics, cosmetics, and pharmaceuticals. Ensuring the safety of all these compounds is a daunting task. Researchers led by Prof Jinhee Choi at University of Seoul are developing cutting-edge artificial intelligence models to predict the potential dangers toxicity of chemicals, with the aim of reducing the need for controversial animal experiments. By analysing vast toxicology databases and pioneering new AI techniques, Prof Choi’s team is working towards a future where the safety of everything from industrial compounds to household products can be assessed more quickly, cheaply, and humanely.
Dr Philipp Jordt | Finding the Best Way for Large Research Facilities to Handle All Their Data
As technology advances, physical experiments are performed by bigger, more powerful, and more sophisticated machines. Research conducted using these large-scale facilities (LSF) typically involves collaboration between the operating staff, instrument scientists, and external research groups, who propose specific experiments to be performed. With many people involved and such large volumes of data generated by each experiment, it has become challenging to make sure that results are collected, catalogued, stored, and distributed efficiently.
The German consortium DAPHNE4NFDI has been working to integrate Electronic Laboratory Notebooks (ELNs) into the Photon and Neutron (PaN) research community. One of their main goals has been to develop the decision-making process behind how research facilities, universities, and researchers can evaluate the range of ELNs available and decide on which solution to integrate into their operations.




