Dr Linda Hammerich | Revolutionising Immune Monitoring with Flow Cytometry

Nov 19, 2024 | Medical & Health Sciences

Understanding the individual immune response is key to diagnosing and treating a range of diseases. One way of characterising immune cells is through flow cytometry, where cells are tagged with fluorescent markers known as fluorochromes. Detectors use these markers to understand the different physical and chemical features of the individual cells and the overall immune cell population. Dr Linda Hammerich and a team from Charité-Universitätsmedizin in Germany have optimised this technique to investigate up to 31 different cells or markers from one blood test using currently available technology.

The Immune System and Flow Cytometry

The immune system is a complex network of cells, proteins, and molecules that defend the body against infections, disease, and other foreign invaders. Its primary role is recognising and neutralising pathogens such as bacteria, viruses, fungi, and parasites. Immune cells, such as white blood cells like lymphocytes, macrophages, and neutrophils, are key players in this defence mechanism. Beyond fighting infections, the immune system plays a vital role in identifying and eliminating cancer cells. It also helps in wound healing and tissue repair.

However, an overactive immune response can lead to autoimmune diseases, where the body mistakenly attacks its own tissues, and allergic reactions, where harmless substances trigger an immune response. Thus, the immune system’s varied functions are essential for maintaining overall health and protecting the body from a wide range of threats. Understanding a patient’s immune response is key to providing appropriate care, particularly in the current age of personalised medicine.

Flow cytometry is a powerful laboratory technique used to analyse the physical and chemical characteristics of cells or particles suspended in a fluid. It operates on the principle of passing these cells through a laser beam, one cell at a time, and measuring the light they scatter and the fluorescence they emit. The process begins with cells being stained with fluorescent dyes known as fluorochromes that bind to specific cellular components. Detectors capture the scattered light and fluorescence that is emitted as these stained cells pass across the laser.

Forward scatter (FSC) provides information about cell size, while side scatter (SSC) gives insights into cell complexity or granularity. Fluorescent markers reveal specific features, such as surface proteins, DNA content, or other cellular functions.

Flow cytometry is widely used in healthcare to diagnose and monitor various diseases. In immunology, it’s essential for identifying and counting different types of immune cells, which is crucial for managing conditions like HIV and autoimmune disorders. In oncology, flow cytometry helps diagnose blood cancers such as leukaemia and lymphoma by identifying abnormal cell populations and monitoring the immune cell population.

Full Spectrum Flow Cytometry

As our understanding of the immune system and its role in different diseases has become more advanced, it has become increasingly valuable and important for clinicians to analyse as many immune cells and markers from one blood test as possible. Traditional flow cytometry has been useful at answering important but simple questions, such as how many of one type of cell there are in someone’s blood, but it has not been able to answer more detailed questions.

Full-spectrum flow cytometry is an advanced version of flow cytometry. Unlike the traditional method, which uses a few specific filters to detect different colours of light, this method uses many detectors to capture the entire range of light emitted by the fluorochromes attached to the cells. This allows scientists to simultaneously analyse many different markers on a single cell, giving them a much more detailed picture of its characteristics.

Gaining the Maximum Benefit from Existing Technology

To help understand the potential for full-spectrum flow cytometry to be used on the traditional flow cytometry machines currently found in healthcare and research labs, Dr Linda Hammerich and her team of scientists at Charité-Universitätsmedizin in Germany have been conducting research to calculate the maximum number of cell markers that can be detected using standard equipment and fluorochromes.

The team conducted careful planning and experiments using real cells to design a panel of 31 fluorochromes to analyse different aspects of immune cells from human blood tests. They worked with blood donated by healthy volunteers and antibody/fluorochrome combinations that had already been tested and optimised in their lab on traditional flow cytometers. They followed guidelines from the flow cytometer machine manufacturer (Cytek Biosciences) for typical 3-laser machines to select an initial set of 23 fluorochromes.

Then, they gradually added more dyes, ensuring each new one had a distinct colour profile from those already included. For immune markers that are usually low in healthy people, they swapped them out for markers with higher levels to ensure all 31 markers could be clearly identified. They checked if the antibodies worked as well on the Cytek AuroraTM spectral flow cytometer as they did on conventional machines found in hospitals and research laboratories. This was the case when they were used at the same concentration. If an antibody did not show clear results, they adjusted its concentration using a process called titration. They performed controls to find the optimal amount for clear detection for each fluorochrome.

The team’s work had very exciting results. They have produced a panel that can identify all the major immune cell types that would be found in a human blood test, including types of cells that are only found at very low frequencies. The method does not require any custom setup and utilises commercially available fluorochromes, making it especially valuable to healthcare systems with financial limitations worldwide. The panel can also act as a starting point or a model for other researchers and healthcare professionals to create similar multi-panel markers studying immune cells, as the panel can be tailored to different research or clinical needs.

The team are especially excited by the fact that their detection panel only utilised 29 of the 38 detectors available on the machine due to overlapping fluorescence, meaning there is potential to build from their work and develop even more detailed panels as biotechnology companies develop novel fluorochromes.

SHARE

DOWNLOAD E-BOOK

REFERENCE

https://doi.org/10.33548/SCIENTIA1124

MEET THE RESEARCHER


Dr Linda Hammerich
Department of Gastroenterology, Charité-Universitätsmedizin, Berlin, Germany

Dr Linda Hammerich gained her PhD in liver inflammation from RWTH Aachen University in Germany. She then spent five years as a postdoctoral researcher at the Tisch Cancer Institute at Icahn School of Medicine at Mount Sinai in New York City, USA. She now leads a research group at Charité-Universitätsmedizin in Berlin, Germany, where she specialises in tumour immunology and immunotherapy in gastrointestinal cancers. She is leading research on developing vaccines for liver cancer. She is also committed to reducing the use of animals in biomedical research by optimising traditional techniques such as flow cytometry to gain the most information from a single sample. Alongside her research, she supports MSc, PhD, and medical students with their research projects. She has been invited to share her expertise by speaking at medical and immunological conferences worldwide.

CONTACT

E: linda.hammerich@charite.de

W: https://hepatologie-gastroenterologie.charite.de/en/research/tumor_immunology_and_immunotherapy_of_gi_tumors/

X: @Flt3Linda

FUNDING

Charité 3R│Replace – Reduce – Refine

FURTHER READING

Y Shevchenko, I Lurje, F Tacke, L Hammerich, Fluorochrome-dependent specific changes in spectral profiles using different compensation beads or primary cells in full spectrum cytometry, Cytometry A, 2024, 105(6), 458–463. DOI: https://doi.org/10.1002/cyto.a.24836

L Hammerich, Y Shevchenko, J Knorr, et al., Resolving 31 colors on a standard 3-laser full spectrum flow cytometer for immune monitoring of human blood samples, Clinical Cytometry, 2023, 104(5), 367–373. DOI: https://doi.org/10.1002/cyto.b.22126

REPUBLISH OUR ARTICLES

We encourage all formats of sharing and republishing of our articles. Whether you want to host on your website, publication or blog, we welcome this. Find out more

Creative Commons Licence (CC BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

SUBSCRIBE NOW


Follow Us

MORE ARTICLES YOU MAY LIKE

Dr JoLee Sasakamoose – Dr Mamata Pandey | Empowering Indigenous Health: The Indigenous Wellness Research Collaborative in Saskatchewan

Dr JoLee Sasakamoose – Dr Mamata Pandey | Empowering Indigenous Health: The Indigenous Wellness Research Collaborative in Saskatchewan

The Indigenous Wellness Research Collaborative is a transformative alliance dedicated to advancing health systems and service delivery for Indigenous communities across Saskatchewan. Founded a decade ago and co-led by Dr Mamata Pandey, a research scientist at the Saskatchewan Health Authority, and Dr JoLee Sasakamoose (M’Chigeeng First Nation), Canadian Institute of Health Research Chair in Indigenous Wellness and Health Equity at the University of Regina, their team’s work is rooted in a commitment to Indigenous leadership and community-defined wellness goals. Guided by the Cultural Responsiveness Framework, the Collaborative prioritises creating ethical spaces that serve as a middle ground for respect, reciprocity, and authentic partnerships. The team employs a strengths-based approach to health research, centering Indigenous methodologies that respect the interconnectedness of spiritual, mental, emotional, and physical well-being.

Professor Jaya Krishnan | Revolutionary Gene Therapy Helps Hearts Regenerate After Heart Attacks

Professor Jaya Krishnan | Revolutionary Gene Therapy Helps Hearts Regenerate After Heart Attacks

Myocardial infarction, commonly termed as a heart attack, is a major cause of death and poor health worldwide. Regenerating heart tissue is an exciting and promising concept that can have significant benefits in myocardial infarctions and related diseases, but this has not yet been achieved in real-life clinical treatments. In a collaboration between Goethe University Frankfurt and Goethe University Hospital, Professor Jaya Krishnan and colleagues address this by controlling pathologic genes involved in the development of heart failure that develops after heart attacks. The researchers demonstrate a new way of treating heart disease by aiding in the division and regrowth of heart cells after a heart attack.

James J. Driscoll, MD, PhD | Immunoproteasome Activation Enhances the Recognition of Tumour Cells and Boosts Anticancer Immune Responses

James J. Driscoll, MD, PhD | Immunoproteasome Activation Enhances the Recognition of Tumour Cells and Boosts Anticancer Immune Responses

The correct functioning of the human immune system depends on its ability to recognise danger, such as tumour cells, viruses, and bacteria. Scientists are learning how immunoproteasome activation can overcome the mechanisms by which cancer cells escape immune responses. Immunoproteasomes are small high molecular weight protein-degrading machines that signpost abnormal proteins made by cancer cells, directing the immune system against them. Dr James Driscoll at University Hospitals Cleveland Medical Center is using novel proprietary small molecules to selectively boost the catalytic activity of immunoproteasomes, which increases the tumour killing (or cytotoxic) effect of a group of white cells called T-cells. These findings provide a strong rationale for developing personalised therapeutics that target immunoproteasomes, for cancer and other immune-mediated conditions.

New Approaches to Treating Alzheimer’s Disease

New Approaches to Treating Alzheimer’s Disease

Alzheimer’s disease is a devastating condition that strips away people’s memory, thinking, and independence. By 2050, it is expected to affect over 100 million people around the world, making it a high priority for scientific and medical research. Researchers are now exploring the potential for mechanical and light-based stimulation of the brain and nervous system to treat Alzheimer’s disease symptoms. At the University of Minho in Portugal, Francisca Monteiro is developing a PhD project supervised by a multidisciplinary set of experienced researchers, who have reviewed the evidence behind these approaches, including whole-body vibration, auditory stimulation, transcranial ultrasound stimulation, and photobiomodulation. The team aims to synthesize the evidence to support these treatments and understand what further work is needed.