Dr Peter McEvoy – Biological Control in the Light of Contemporary Evolution

Aug 13, 2019 | Biology, Earth and Environment

‘Biological control’ refers to the practice of controlling invasive pest populations by introducing their natural enemies into an ecosystem. Although biological control can reduce reliance on toxic chemicals and protect natural ecosystems, this approach is not without its challenges. Dr Peter McEvoy and his colleagues at Oregon State University discovered that certain biological control organisms show unexpectedly fast rates of evolution, which can lead to unforeseen impacts on ecosystems and agriculture. These scientists believe that it is time to develop an all-embracing theory to help assess the evolutionary potential of biological control organisms that may influence the efficacy and safety of future introduction programs.

What is Biological Control?

In the United Nations’ recent landmark IPBES Global Assessment, which details the most extensive evaluation of life on Earth ever performed, invasive alien species were identified as one of the five major drivers of global biodiversity loss. In addition to causing widespread ecological destruction, such introduced invasive species can wreak havoc on agricultural production, causing billions of dollars in crop damage every year.

As a way to avoid the excessive use of chemical pesticides and herbicides, farmers can control populations of invasive insects, mites and weeds by introducing other species to a cropping system, typically herbivores, predators, parasites or pathogens. Similarly, many land managers also take this approach to reduce the environmental damage caused by invasive species. The process relies on natural mechanisms that the new species can bring to a system, such as eating the pest, out-competing it, or causing disease, without damaging crops or the environment.

Such biological approaches to pest control first emerged in the late 1800s, but it wasn’t until 1919 that entomologist Harry Smith introduced the term ‘biological control’. It is now a well-established form of pest management, which reduces the use of chemicals and their adverse effects on the environment, while also not requiring repeated and costly applications. This approach is generally seen as a sustainable method that requires a low level of resources and can be maintained indefinitely.

However, there are historical examples showing that this method can sometimes be unsafe, as biological control organisms can begin to show harmful effects towards non-target species. Unlike chemicals, biological control organisms can reproduce and spread autonomously, and even evolve. As a result, many scientists advocate for more research into the long-term impacts of introducing biological control species. The reality is that biological control organisms can become invasive pests themselves, creating even more problems for farmers and ecosystems. This is certainly the worst-case scenario, but is not beyond the realm of possibility.

In the past, there have been several reported cases of weed-controlling organisms that started to directly damage the plants they were meant to protect. To avoid further cases like this, the introduction of biological control species is now tightly regulated. Scientists must now conduct extensive lab and field trials, to demonstrate that the species they wish to introduce will attack only the target species. Such pre-release trials must also show that the candidate control organism is likely to be effective in controlling the target organism.

However, these assessments are imperfect when it comes to identifying potential risks. For example, this approach does not assess whether an introduced species can evolve rapidly in response to its new environment. For the past two decades, this has been the focus of Dr Peter McEvoy’s research in the Department of Botany and Plant Pathology at Oregon State University. Dr McEvoy strongly recommends that the foundations of biological control technology must be reviewed, in order to establish ways to improve it, both in terms of safety and efficacy.

‘Without theory, biological control will continue to rely on ad hoc procedures based mainly on inadequately documented past experiences’

Purple loosestrife, a highly invasive plant in North America

Rapid Evolution

The introduction of a new biological control species is currently performed under the assumption that its rate of evolution is extremely slow and can be safely ignored. However, Dr McEvoy and his colleagues discovered that in certain species, evolution occurs much faster than anticipated. From a practical point of view, this not only makes the outcome of a species introduction program rather unpredictable, but also raises concerns about the safety of biological control practices.

In one study, Dr McEvoy and his team followed the human-assisted migration of the cinnabar moth from Willamette Valley in Oregon to nearby habitats at much higher elevations, namely the Coast Range and the Cascade Mountains. This moth was originally introduced to North America as a biological control species that targets invasive ragwort, on which the moth’s larvae feed.

Within just 10 years, the team observed that the cooler temperatures in the mountains shortened the moth’s growth phase, and individual insects completed their life cycle faster as they emerged earlier as adults in spring, developed faster through egg and five larval stages, and arrived earlier at the over-wintering pupa stage in fall. This effect was stronger in the Cascade Mountains, which are higher than the Coast Range.

The team’s results mean that the cinnabar moth has the ability to adapt rapidly to a new environment. In this particular case, the reduced number of days that were warm enough for egg and larval development meant that only individuals with a shorter growth phase would survive, passing this rapid-growth trait on to subsequent generations.

This is the essence of evolution by natural selection, whereby the underlying genetic variation within a population allows advantageous traits to be passed on to the next generation, while detrimental traits die out. Without this underlying genetic variation, the moths would not have been able to adapt so quickly. Therefore, Dr McEvoy suggests that a compulsory review for evolutionary potential should be conducted prior to any introduction program.

There is a positive aspect to evolutionary potential. Rapid evolution could improve biological control organism’s success by adaptation to new environments. For example, rapid evolution of the cinnabar moth allows it to better control the target weed in mountain environments; however, the downside is that the moth can now feed and develop on non-target plant species growing in mountain environments.

Dr McEvoy and his team’s research has had an enormous impact on the field. ‘Rapid evolution is one of the most talked-about topics in ecology that has recently spread to biological control,’ he says. ‘The growth and interest in biological control are due, in no small measure, to recent advances in rapid evolution for which we helped lay the foundation.’ Despite these recent advances, Dr McEvoy knows that more studies are needed. Research must combine real cases of evolution and theoretical approaches to develop a more reliable basis to understand potential impacts.

To continue this work, Dr McEvoy and his team plan to identify the genes associated with the changes detected, as well as conduct international surveys to find out whether other populations of the cinnabar moth are undergoing similar changes. Locations to survey include Canada and New Zealand, where the moth was introduced as a biological control species, and in Central Europe, where it occurs naturally. In all of these places, the cinnabar moth is found at both low and high altitude, providing a perfect model for comparing with the situation in Oregon.

‘Without theory, biological control will continue to rely on ad hoc procedures based mainly on inadequately documented past experiences’

Cinnabar moth larvae feeding on invasive ragwort

Rejuvenating the Field

Along with their investigations into evolutionary changes in the cinnabar moth, Dr McEvoy collaborated with statisticians to develop new methods for comparing the timing of important life-cycle events. ‘Ecology is a young science, and scientific investigations in our field often need both new discoveries and development of better methods to progress,’ he says. 

Typical methods used in this field of research are useful for describing the timing of life-cycle events and for comparing patterns of development between different populations, locations and times. However, most models that are used today were created more than 50 years ago, and are in need of improvement.

As a way of rejuvenating the field, Dr McEvoy’s team introduced two new models into the mix. Essentially, their methods provide a simple way to compare different stages of the life cycle between two populations and are easily implemented and interpreted. Dr McEvoy is keen to replace older and more complex models with these simpler versions, which are not only easier to use, but produce much better results in simulations than any method previously used.

Cinnabar moth

In Search of a Unifying Theory

When biological control methods first emerged, few anticipated the evolutionary changes that would arise. Now, scientists are aware of the potential for rapid evolution, which can have unexpected effects on ecological interactions among control organisms, target organisms, and non-target organisms. 

According to Dr McEvoy, these issues are starting to emerge due to the absence of an adequate theoretical foundation of biological control to help scientists, farmers and land managers decide on the best species to introduce. He explains that such a theoretical framework would help in recognising problems and identifying possible ways to solve them. When faced with new locations and new target species, an overarching theory would also help scientists to compare and extrapolate to these new situations.

For example, a theory could help in identifying how observable traits of control organisms, such as their tolerance of environmental conditions, searching and feeding behavior, growth rates and reproduction, contribute to effective control of the target organism without harming non-target organisms. This would then allow investigators to screen for genetic variation in those traits, which natural or artificial selection might influence to improve performance.

Ideally, a theory would combine knowledge from natural history, mathematical models and both experimental and observational field studies, so that the strength of one approach can compensate for the weakness of another. Theory converts examples and case studies into more powerful explanations that can be applied to different situations, and even suggests ways to investigate further. ‘Without theory, biological control will continue to rely on ad hoc procedures based mainly on inadequately documented past experiences,’ says Dr McEvoy.

As a stepping stone, his team is currently developing a database of all biological weed control projects conducted in the United States. This is not just a catalogue of what species were introduced but, for the first time in North America, it collates data linking the tests conducted before the release with actual outcomes after release. Once this database is complete, it will be a valuable tool to predict the risk of non-target host use associated with each candidate species before its introduction.

Reference
https://doi.org/10.33548/SCIENTIA399

Meet the Researcher


Dr Peter McEvoy
Department of Botany and Plant Pathology
Oregon State University
Corvallis, Oregon
USA

After achieving his bachelor’s degree in biology from Amherst College and a PhD in ecology and evolutionary biology at Cornell University, Dr Peter McEvoy joined the Department of Entomology at Oregon State University in 1977. Currently, he holds the position of Emeritus Professor at the Department of Botany and Plant Pathology. In addition to his extensive research into biological control systems, Dr McEvoy conducts broad-based research on behaviour, ecology, and evolution. He also teaches undergraduates and mentors multiple MSc and PhD students and post-doctoral fellows. Throughout his career, he has been involved in several introduction projects of biological control species, including four insect species to control purple loosestrife in 1992 and one moth species to control rush skeletonweed in 2005, and in redistributing three species for control of ragwort.   

CONTACT

E: mcevoyp@science.oregonstate.edu

W: https://mcevoyp.weebly.com/

KEY COLLABORATORS

Linda Buergi, Oregon State University

Monte Mattsson, Oregon State University

Katarina Lunde, Oregon State University

Madison Rodman, University of Minnesota

Keith Hopper, Agricultural Research Service, USDA

Kimberley Higgs, US Forest Service

Paul Murtaugh, Oregon State University

Sarah Emerson, Oregon State University

Fritzi Grevstad, Oregon State University

Tyson Wepprich, Oregon State University

Evrim Karaçetin, Erciyes University, Turkey

Eric Coombs, Oregon Department of Agriculture

FUNDING

US National Science Foundation

USDA-NIFA

FURTHER READING

P McEvoy, Theoretical contributions to biological control success, BioControl, 2018, 63, 87–103.

F Grevstad, LB Coop, The consequences of photoperiodism for organisms in new climates, Ecological Applications, 2015, 25, 1506–1517.

P McEvoy, K Higgs, E Coombs, E Karacetin, L Starcevich, Evolving while invading: rapid adaptive evolution in juvenile development time for a biological control organism colonizing a high-elevation environment, Evolutionary Applications, 2012, 5, 524–536.

P Murtaugh, S Emerson, P McEvoy and K Higgs, The statistical analysis of insect phenology, Environmental Entomology, 2012, 41, 355–361.

P McEvoy, E Coombs, Why things bite back: unintended consequences of biological weed control, Nontarget effects of biological control, Kluwer Academic Publishers, 2000, 167–194.

 

Creative Commons Licence
(CC BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Subscribe now!


More articles you may like

Dr Mary Meyer – Going Native with Grasses

Native grasses have great environmental benefits, not least as a food source for a wide variety of butterfly and moth species. However, native grassland habitats are some of the most endangered in North America, with less than 1% of original tallgrass prairie remaining. Dr Mary Meyer and her colleagues at the University of Minnesota have been working to evaluate the use of native grasses by butterfly and moth species. They are also working with garden centres to increase the volume of native grasses sold and grown in Minnesota.

Dr Peter Evans – Retro-Causality: Unravelling the Mysteries of Quantum Cosmology

Despite many years of research aiming to unite quantum mechanics with cosmological theories, researchers in fields across physics and philosophy remain in disagreement about a solution. Now, Dr Peter Evans at the University of Queensland sheds new light on the debate. He argues that on quantum scales, the idea of cause and effect does not need to follow the one-way passage of time, as we understand it. If correct, his theories could dispel some of the most puzzling mysteries of quantum theory – a significant step forward in understanding the true nature of the universe.

Dr Michael Rothrock – Ensuring Food Safety of Pasture-Raised Chicken

Pasture-raised chicken is viewed as a more ethical option compared to that reared in overcrowded barns. However, pasture-raised birds are more likely to come in contact with bacterial pathogens that can be dangerous to consumers. Dr Michael Rothrock and his colleagues, at the Egg Safety and Quality Research Unit of the United States Department of Agriculture – Agricultural Research Service, investigate how environmental factors can lead to the contamination of pasture-raised chicken with harmful bacteria. Through their research, the team hopes to find ways of ensuring the safety of this popular food.

Dr Amber Adams-Progar – A Holistic Approach to Improving Dairy Farming

Dairy farming is a tough business, where farmers experience countless challenges on a regular basis, from ensuring the health and welfare of their cattle to protecting the safety of their employees. Dr Amber Adams-Progar and her team in the Department of Animal Sciences at Washington State University are involved in many research projects, which aim to improve various aspects of the dairy industry, by protecting farm profits, worker safety and animal welfare.