Dr Shantanu Basu – Exploring the Formation of Gravitationally Bound Objects Across the Universe

Dec 18, 2019 | Astronomy and Planetary Science, Physical Sciences & Mathematics

From brown dwarfs to supermassive black holes, many of the strangest objects known to astronomers are formed as material collapses in on itself under its own gravity. Through a combination of physical theories and the latest computer simulations, Dr Shantanu Basu at the University of Western Ontario in Canada is offering intriguing new insights into how these structures originate. His theories could help astronomers to understand the very earliest stages of bodies ranging from those too small to become stars, to the vast, all-devouring heavyweights that reside in the centres of galaxies.

From Brown Dwarfs to Black Holes

Gravity may be the weakest of the universe’s four fundamental forces, but it is nonetheless critical in shaping the landscape of the universe. In patches of space where the densities of gas, dust and other interstellar material become high enough, the force will inevitably pull it all together to form larger structures. The physical theories surrounding these processes may have been around since they were first described by Newton, but much remains to be discovered about the diverse array of bodies they can form.

This is where Dr Shantanu Basu at the University of Western Ontario comes in. ‘My overall research program is to understand the assembly of gravitationally-bound objects in the universe, whether they are stars that form in the present-day or early universe, planets or brown dwarfs that form in circumstellar disks, or supermassive black holes that form through direct collapse in the early universe,’ he explains.

Due to the sheer complexity of these scenarios, traditional calculations alone are not enough to explore them in detail. Instead, Dr Basu combines them with the capabilities of the latest simulation techniques. ‘Through the use of large computer simulations, or analytic insight where possible, our group has discovered many features of the assembly of these objects,’ he continues. With these techniques, Dr Basu and his colleagues have drawn new insights into the formation of structures including ordinary stars, bodies too small to become stars, and the very heaviest black holes in the universe.

A Star is Born

Having observed them in meticulous detail for many centuries, astronomers are now able to predict the life cycles of many types of star – from red dwarfs to blue supergiants – with high degrees of certainty. However, the very earliest stages of star formation still remain shrouded in mystery. The most widely accepted theories predict that the process occurs as interstellar material collapses, forming structures called ‘protostars’, which are too small and well hidden to observe directly.

Building on these theories, astronomers including Dr Basu use simulations to study how small, dense lumps can transform into bodies hot enough to fuse hydrogen in their cores. As Dr Basu explains: ‘Stars have been found to form through a highly episodic mass assembly process, during which a protostar can for a time brighten dramatically.’ He concludes that this process is strongly influenced by doughnut-shaped clouds of material surrounding new protostars.

Furthermore, Dr Basu proposes that some of the material in these ‘circumstellar’ disks will go on to influence planet formation, while some of it may escape the system entirely. ‘We have found that circumstellar disks can form protostellar or protoplanetary embryos that then migrate through the disk and can either fall into the central protostar, be ejected to form free-floating bodies, or carve out a gap in the disk and settle into a stable orbit,’ he continues.

In his research, Dr Basu explores these behaviours in further detail by accounting for the magnetic behaviours of fluids that conduct electricity – as is the case for circumstellar disks.

3D view of outflowing gas (green and yellow surfaces) and magnetic field lines (red lines) in the vicinity of a newly formed protostar. CREDIT: Masahiro Machida, Shantanu Basu.

Shutting Down Braking

In our own solar system, the process of ‘magnetic braking’ is a well-studied phenomenon. It occurs as electrically charged material captured by the Sun’s magnetic field rotates at the same speed as the Sun. Eventually, the material will escape, carrying with it some of the Sun’s angular momentum – subsequently slowing down its spin. Dr Basu proposes that this same effect can be seen in the environments surrounding early protostars, and initially prevents circumstellar disks from forming.

To allow disks to form, Dr Basu’s simulations suggest that this braking is shut off as the surrounding magnetic field dissipates. Furthermore, the loss in angular momentum during braking allows a hydrogen-burning stellar core to form within the disk.

‘Large scale magnetic fields are found throughout the universe, and our work shows that their removal during protostar assembly allows the formation of circumstellar disks, while also driving powerful jets and outflows of material from these regions,’ he explains.

In one of his latest studies, Dr Basu and his colleague used their simulations to follow the subsequent dynamics over the first 2,000 years after the formation of a protostar. They have now concluded that the circumstellar disk is never absent over this period; instead, it grows and its density will increase, and spiral arms will form due to gravitational instabilities. As this happens, the disk will transfer mass to the central protostar, allowing it to grow. In turn, some material flows out from the system, inducing effects including highly time-variable jets, cavities within the disk, and structures called knots and bow shocks.

Forming Failed Stars

Dr Basu also proposes that this process could explain the origins of another long-standing astronomical mystery: brown dwarfs. Typically having masses between 13 and 80 times heavier than Jupiter in our solar system, these cold objects are too large to be classed as planets, but too small to become hot enough for sustained nuclear fusion to occur. Since their initial discovery in the mid-1990s, several hundred brown dwarfs have now been observed directly. Multiple previous theories have suggested that brown dwarfs are formed as interstellar clouds collapse in on themselves directly, but currently, they disagree on the exact mechanisms by which this occurs.

As an alternative theory, Dr Basu and his colleague suggested in a 2012 study that brown dwarfs originate within circumstellar disks around protostars, in the very earliest stages of star formation. Over time, fragments of the disk will form large, dense clumps, which interact with each other through their mutual gravitational attraction. Ultimately, these dynamics will cause some fragments to gain speeds high enough to escape into interstellar space, where they finally collapse to form brown dwarfs. If this theory is correct, it would likely explain why many of the objects appear to cluster closely around young stars.

Mysteriously Colossal Structures

On far larger scales, Dr Basu has also explored the formation of the enigmatic black holes found within many galactic centres – including that of our own Milky Way. Typically, black holes are known to form when the most massive stars collapse in immense explosions called supernovae, leaving behind remnants so dense that not even light can escape from them. In the most extreme cases, these remnants can be many tens of times heavier than our Sun. However, the masses of the largest black holes known to astronomers – dubbed ‘supermassive’ black holes – are far greater, sometimes as much as a billion times heavier than the Sun.

Even accounting for how black holes will accrete mass from their surrounding environments after their formation, the laws of physics need to be stretched to allow such large structures to form at the early times in the universe’s history at which they are observed. In addition, astronomers currently remain in the dark as to why quasars – supermassive black holes with extremely bright jets originating from their poles – are so varied in their apparent brightness. Clearly, an updated physical theory is sorely needed.

Bypassing Stellar Remnants

In his latest research, Dr Basu and his student suggest that the origins of these mysterious structures don’t follow the deaths of stars, but instead lie within the universe’s earliest stages: less than 800 million years after the Big Bang. During this period, Dr Basu’s model shows that there could have been a brief era in the early universe when massive black holes formed in a way that bypassed the supernova stage entirely, instead forming directly due to the collapse of vast amounts of interstellar material under gravity. Moreover, the number of these direct collapse black holes would have been increasing rapidly during this era.

If correct, this theory could reliably explain some features  of quasars, as astronomers observe them today. ‘Quasars are supermassive black holes that are swallowing prodigious amounts of material, and our work has shown that the direct collapse scenario can explain their observed luminosity distribution, and has constrained the rate and duration of their formation in the early universe,’ Dr Basu describes. ‘Using this approach, we have also been able to understand the features of the observed quasar luminosity function.’

Dr Basu’s new theory could help pinpoint the time and rate at which quasars formed in the universe. If correct, this insight would have profound implications for our knowledge of the evolution of the universe as we know it, and could be applied to understanding many of its observed features.

Gas surface density distribution. The arrow identifies a proto-brown-dwarf that is ejectedfrom the circumstellar disk surrounding a young protostar. CREDIT: Eduard Vorobyov, Shantanu Basu.

Understanding Gravitationally Bound Objects

As the instruments used by astronomers to observe the universe become increasingly accurate, new findings are continuing to surprise them, and throw unending curveballs towards long-established physical theories.

Yet in the face of these challenges, Dr Basu and his colleagues are pushing our understanding of the universe ever further. If their conclusions become widely accepted, astronomers could soon become far better equipped to explain the origins of the universe’s bewildering array of gravitationally bound objects.

Reference
https://doi.org/10.33548/SCIENTIA455

Meet the researcher


Dr Shantanu Basu

Department of Physics and Astronomy
University of Western Ontario
London, Ontario
Canada

Dr Shantanu Basu completed his PhD in Physics at the University of Illinois at Urbana-Champaign in 1993. He has now worked at Western since 1999, where he became a Professor in the Department of Physics and Astronomy in 2010. Dr Basu’s research interests include the physics of gravitationally bound objects: from collapsing stars and discs, to the formation of supermassive black holes in the early universe. He has made significant contributions to theories including the roles played by magnetic fields and angular momentum in gravitational collapse and star formation, as well as luminosity bursts from young stellar objects. Outside of his research, Dr Basu has demonstrated a strong involvement in international education, and has organised a number of diversity and equity-related projects in recent years.

CONTACT:

E: basu@uwo.ca

W: http://www.physics.uwo.ca/~basu/

KEY COLLABORATORS

Sayantan Auddy (ASIAA, Taiwan), Paola Caselli (MPE, Germany), Christopher Essex (UWO, Canada), Karl-Heinz Hoffmann (Chemnitz University, Germany), Takahiro Kudoh (Nagasaki University, Japan), Matthew Kunz (Princeton, USA), Sophia Lianou (National Observatory of Athens, Greece), Masahiro Machida (Kyushu University, Japan), Philip Myers (Harvard-Smithsonian Center for Astrophysics, USA), Janett Prehl (Chemnitz University, Germany), Sarah Sadavoy (Queen’s University, Canada), Yusuke Tsukamoto (Kagoshima University, Japan), Eduard Vorobyov (University of Vienna, Austria)

FUNDING

Natural Sciences and Engineering Research Council of Canada

Mitacs Canada

FURTHER READING

MN Machida, S Basu, The First Two Thousand Years of Star Formation, The Astrophysical Journal, 2019, 876, 149.

S Basu, A Das, The Mass Function of Supermassive Black Holes in the Direct-collapse Scenario, The Astrophysical Journal Letters, 2019, 879, L3.

WB Dapp, S Basu, MW Kunz, Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation, Astronomy & Astrophysics, 2012, 541, A35.

S Basu, EI Vorobyov, A hybrid scenario for the formation of brown dwarfs and very low mass stars, The Astrophysical Journal, 2012, 750, 30.

 

Creative Commons Licence
(CC BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.


More articles you may like

AI-Based Video Monitoring of Movement Disorders: Improving Care for Patients with Parkinson’s Disease

AI-Based Video Monitoring of Movement Disorders: Improving Care for Patients with Parkinson’s Disease

As our global population ages, movement disorders like Parkinson’s disease present growing challenges for healthcare systems. Traditional assessment methods rely on subjective clinical ratings during brief clinic visits and often fail to capture the full picture of a patient’s condition. Professor Martin McKeown and his colleagues are pioneering innovative artificial intelligence approaches which use ordinary video recordings to objectively monitor movement disorders. These cutting-edge technologies promise to transform care for millions of patients by enabling remote, continuous assessment of symptoms, while reducing healthcare costs and improving quality of life.

Professor E John List | Tracking Invisible Waters: Predicting the Spread of Contaminated Groundwater Through Underground Aquifers

Professor E John List | Tracking Invisible Waters: Predicting the Spread of Contaminated Groundwater Through Underground Aquifers

When we think about water pollution, we often picture oil spills on the ocean surface or chemicals flowing down rivers. But some of the most significant environmental challenges occur completely out of sight, deep underground, where contaminated water moves through layers of rock and soil. Understanding how these invisible pollutants travel has profound implications for protecting our drinking water supplies and coastal ecosystems. Groundwater engineer Dr E. John List has developed an approach that challenges fundamental assumptions about how contamination spreads underground.

Professor Nicola Curtin | Potential for Improving Cancer Treatment by Optimising Drug Scheduling

Professor Nicola Curtin | Potential for Improving Cancer Treatment by Optimising Drug Scheduling

Cancers often develop because of faulty DNA repair systems. PARP inhibitors (PARPi) are a class of targeted anti-cancer drugs that exploit this weakness, by inhibiting a complementary DNA repair system, to selectively target the tumour. However, these medicines need to be taken every day, creating a burden on patients and reducing the options for combination with other anticancer therapies. Professor Nicola Curtin and her team at Newcastle University investigated how long different PARPi stay active in cancer cells after a single dose and how this influences their effectiveness when combined with another anti-cancer drug.

Dr Richard Marchant | Restoring the Flow: Stream Life Slowly Returns After Rabbit Eradication on Macquarie Island

Dr Richard Marchant | Restoring the Flow: Stream Life Slowly Returns After Rabbit Eradication on Macquarie Island

The remote streams of subantarctic Macquarie Island are home to low diversity freshwater invertebrate communities with an unusual taxonomic composition. However, over a century of grazing by introduced rabbits dramatically degraded surrounding vegetation, increasing erosion and disturbing stream ecosystems. Following rabbit eradication in 2016, Dr Richard Marchant of Museums Victoria and colleagues from the University of Canberra and the Australian Antarctic Division investigated whether the island’s streams were recovering ecologically. Their study reveals a slow but measurable resurgence of invertebrate taxa, particularly in areas with moderate prior damage and vegetation regrowth, though full recovery remains uncertain.