Dr W. Kent Anger | Dr Fayssal M. Farahat | Dr Pamela J. Lein | Dr Diane S. Rohlman – Establishing the Neurotoxic Impact of Chlorpyrifos Exposure in Workers

Sep 8, 2021 | Biology, Health and Medicine

Chlorpyrifos (CPF) is one of the most commonly used pesticides in the world. Agricultural workers in Egypt have relatively high levels of exposure to it when working in the cotton fields but until now, the neurotoxic impact of this has been uncertain due to a lack of evidence linking CPF dose and neurotoxicity. Dr W. Kent Anger, Dr Fayssal M. Farahat, Dr Pamela J. Lein and Dr Diane S. Rohlman have brought together their respective research expertise to collaborate on this issue. Their findings have the potential to greatly improve the long-term health of employees working with pesticides.

Chlorpyrifos: An Effective Pesticide

Organophosphorus pesticides (OPs) are the most common class of insecticides used in agriculture globally, and include a compound called chlorpyrifos (CPF). Sprayed on plants, animals and even buildings, CPF is used to kill pests by disrupting their nervous system. CPF inhibits the enzyme acetylcholinesterase (AChE), which would normally break down the neurotransmitter acetylcholine. This results in a build-up of acetylcholine in between neurons in the brain, which eventually stops the neurons from signalling. This build-up, known as acute cholinergic toxicity (or chlorpyrifos poisoning) causes the targeted insects, worms and other pests to die. 

Although very effective at killing pests, CPF is also hazardous to the humans who apply it to agricultural crops. The same mechanism that causes acute toxicity in insects can also cause acute cholinergic toxicity in humans. However, a large amount of research suggests that repeated exposure to lower doses of OPs that do not cause acute cholinergic toxicity may cause a variety of neurological issues via mechanism(s) other than AChE inhibition. These range from psychiatric conditions including depression to neurodegenerative diseases like Alzheimer’s disease and deficits in cognitive functioning.

Cotton fields.

However, in the past, not all scientists have agreed that CPF is neurotoxic at doses that do not cause acute cholinergic toxicity due to a lack of evidence supporting a dose-response relationship, which is considered a central tenet of toxicology. In other words, there has been little evidence to confirm that the likelihood of a neurotoxic response to CPF increased as the levels of CPF exposure increased – a dose-response relationship. It was also unclear whether the classic biomarkers used to assess OP exposure in humans, specifically, cholinesterase activity in blood or levels of OP metabolites in urine, were relevant as biomarkers of occupationally-induced CPF neurotoxicity. Biomarkers are characteristics that can be measured to indicate biological processes occurring within the body in response to contaminants or interventions.

Establishing a definitive set of aims to investigate, Dr W. Kent Anger, Dr Fayssal M. Farahat, Dr Pamela J. Lein and Dr Diane S. Rohlman and their colleagues collaborated on an elegant set of studies to confirm the occupational health risks of CPF and to make suggestions for improvements to working conditions to mitigate health risks from CPF.

Patterns of Exposure

The first aim of the group was to establish patterns of exposure to CPF, which was achieved by Dr Farahat and his team studying different types of agricultural workers in Egypt. Based in the Nile delta region, the Ministry of Agriculture oversees cotton fields where they employ a number of different workers in different roles to ensure pest control. There are typically three groups of workers involved in the pesticide application process: applicators who spray the pesticide, technicians who walk in the fields to direct the applicators where to focus the spray, and engineers who usually stand to the side and oversee the operation.

The research team determined how much CPF each group of workers was exposed to by measuring levels of a molecule called 3,5,6-trichloro-2-pyridinol (simplified to TCPy) in their urine samples. TCPy is produced by the body during the metabolic breakdown of CPF, then eliminated in the urine. So, higher levels of TCPy in a sample indicates a higher intake of CPF. Applicators were found to have the highest levels of CPF exposure by far, followed by technicians and then engineers who had the lowest levels.

Cognitive function assessment.

A previous study had shown that in these agricultural workers, CPF primarily enters the body through the skin (dermally), rather than from inhalation in the lungs. When the pesticide is being applied to cotton fields, the applicators walk through the plants they have just sprayed and as a result, their clothes and skin have sustained contact with the pesticides. Consequently, dermal exposure on their legs was found to be particularly high and, due to leakages on some of the applicators’ backpack sprayers, some workers also experienced high exposure on their necks and backs.

The Effect of Dose on Behavioural Tests

Neurobehavioural tests provide a key tool for quantifying the biological effects of CPF on brain function in humans. In the next aim headed up by Drs Anger and Rohlman, behavioural tests were used to assess cognitive functioning and how this may be related to workers in different jobs exposed to differing levels of CPF. An established psychological assessment tool, the Trail Making Test, was used to assess participants’ motor and cognitive speed, as well as their mental flexibility. The test consists of two parts, Trail Making A and B, with the latter being more mentally challenging.

Biomarkers

The team investigated potential biomarkers – TCPy in the urine, as well as AChE and butyl cholinesterase (BuChE) activity in the blood – and their relationship with human behavioural performance. However, they did not see a relationship between AChE and BuChE in blood samples and test performance, even though it is known that levels of these enzymes are reduced in the blood following repeated CPF exposure.

This knowledge allows us to use them as a biomarker for recent exposure, but the team concluded that they are not relevant biomarkers to determine the neurological effects of long-term, repeated exposure to CPF. That is, the repeated doses over time created damage that was measured by the behavioural test. The urinary TCPy measures reflect only the current year exposures, which accurately reflected the exposure differences between the job titles, but the behavioural test results were due to cumulative damage over many years of differing exposure levels, so any year’s urinary measures would likely not, and did not, correlate directly with individual test performance in that year.

Illustration of oxidative stress

When the human CPF exposure conditions were mirrored in rat studies led by Dr Lein, similar biological effects (reduced AChE in the blood and reduced brain function as assessed by behavioural tests) were observed in the exposed rats. Using this model, Dr Lein’s group identified one set of biomarkers that do appear to be linked to OP-induced neurotoxicity – those caused by oxidative stress. An imbalance between the production of reactive oxygen species in cells and tissues and the cellular mechanisms for detoxifying them causes oxidative stress. In humans, this can occur as a result of lifestyle choices like smoking, but as the team investigated here, it is also an effect of exposure to chemicals like pesticides.

Oxidative stress is frequently associated with cognitive impairment, neurodegenerative disease and now with neurotoxicity caused by OPs. Increased lipid peroxidation, protein nitration and decreased antioxidant capacity are all examples of these biomarkers. If they are proven to be indicators of OP-induced neurotoxicity in humans, this could be a useful way to diagnose neurologic damage in OP-exposed individuals and implement intervention strategies quickly.

Implementing Safer Work Practices

Gathering all of their findings over the years, Dr Anger and the team have endeavoured to use them to implement safer conditions in occupational settings. First of all, led by Dr Farahat, focus groups were held separately with applicators, technicians and engineers to provide education on their findings and discuss the use of personal protective equipment.

Employees were also given practical advice on how to better protect themselves from CPF. Rather than walking into crops that had just been sprayed with pesticide, they were encouraged to spray away from themselves and not walk into the plants. Plastic chaps made from cheap and easily accessible materials were demonstrated, which prevents CPF from coming into contact with the workers’ skin on their legs. Chemical-resistant and protective clothing such as shoes and gloves have also been suggested as ways to reduce exposure, although these are expensive. During the intervention, employees were encouraged to reduce exposure, for example, by using a stick to mix pesticides.

Emphasising that these approaches are both inexpensive and simple, the researchers have helped employees working with pesticides to learn how to alter their routines to better protect themselves and their nervous systems from toxicity. As such, the dedicated work by Dr Anger, Dr Farahat, Dr Lein and Dr Rohlman on CPF exposure promises to lead to positive changes in many workers lives in the years to come.

Reference
https://doi.org/10.33548/SCIENTIA726

Meet the researchers


Dr W. Kent Anger
Oregon Health & Science University (OHSU)
Portland, OR
USA

Dr W. Kent Anger received his PhD in Experimental and Physiological Psychology from the University of Maine. He now serves as an Associate Director for Applied Research and is a Professor at the Oregon Institute of Occupational Health Sciences at OHSU, as well as holding a Professorship at the OHSU-PSU School of Public Health.

Contact

E: anger@ohsu.edu

W: https://www.ohsu.edu/oregon-institute-occupational-health-sciences/w-kent-anger-lab


Dr Fayssal M. Farahat
Department of Public Health and Community Medicine
Menoufia University
Egypt

Dr Fayssal M. Farahat obtained his Medical Doctorate from Menoufia University in Egypt. He is a Professor in the Department of Public Health and Community Medicine at the same university. Currently, he works as Director of Community and Public Health, Infection Prevention and Control Program, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

Contact

E: farahatfa@ngha.med.sa

Twitter: @fmfayssal


Dr Pamela J. Lein
University of California
Davis, CA
USA

Dr Pamela J. Lein earned her PhD in Pharmacology and Toxicology from the University of Buffalo in New York state. Currently, she is a Professor of Neurotoxicology at the University of California, Davis School of Veterinary Medicine.

Contact

E: pjlein@ucdavis.edu

W: https://leinlab.vetmed.ucdavis.edu/

Twitter: @lein.lab.ucd


Dr Diane S. Rohlman
University of Iowa
Iowa City, IA
USA

Dr Diane S. Rohlman received her PhD in Experimental Psychology from Bowling Green State University in Ohio. She holds the Endowed Chair in Rural Health and Safety and is the Director of the Healthier Workforce Center and a Professor at the University of Iowa.

Contact

E: diane-rohlman@uiowa.edu

Further Reading

WK Anger, FM Farahat, PJ Lein, et al., Magnitude of behavioral deficits varies with job-related chlorpyrifos exposure levels among Egyptian pesticide workers, Neurotoxicology, 2020, 77, 216–230.

DS Rohlman, JW Davis, A Ismail, et al., Risk perception and behavior in Egyptian adolescent pesticide applicators: an intervention study, BMC public health, 2020, 20, 679.

EL Berg, TM Ching, DA Bruun, et al., Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos, Journal of neurodevelopmental disorders, 2020, 12, 40.

RA Fenske, FM Farahat, K Galvin, et al., Contributions of inhalation and dermal exposure to chlorpyrifos dose in Egyptian cotton field workers, International Journal of Occupational and Environmental Health, 2012, 18(3), 198–209.

PJ Lein, MR Bonner, FM Farahat, et al., Experimental strategy for translational studies of organophosphorus pesticide neurotoxicity based on real-world occupational exposures to chlorpyrifos, Neurotoxicology, 2012, 33(4), 660–668.

DS Rohlman, WK Anger, PJ Lein, Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure, Neurotoxicology, 2011, 32(2), 268–276.

Want to republish our articles?

 

We encourage all formats of sharing and republishing of our articles. Whether you want to host on your website, publication or blog, we welcome this. Find out more

Creative Commons Licence
(CC BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.


More articles you may like

Professor Bevin Engelward | There’s Something in the Water: N-nitrosodimethylamine

Professor Bevin Engelward | There’s Something in the Water: N-nitrosodimethylamine

N-nitrosodimethylamine (NDMA for short) is a worryingly prevalent, potentially potent carcinogen found in food, water, cigarettes and medical drugs. Researchers at the Massachusetts Institute of Technology, USA, are working to better understand what NDMA does and how cells can defend themselves from its effects, with important implications for public health.

Dr Martín Medina-Elizalde | Collapse of the Ancient Maya Civilisation: Aligning History with Geological Analysis

Dr Martín Medina-Elizalde | Collapse of the Ancient Maya Civilisation: Aligning History with Geological Analysis

Between 800 and 1000 CE, one of the world’s most advanced ancient civilisations underwent a devastating decline. The collapse of ancient Maya society has widely been attributed to a century-long drought; but so far, there have been few efforts to quantify this event, or to equate scientific findings with historical sources. Through new geological and paleoclimatological analyses, Dr Martín Medina-Elizalde at the University of Massachusetts, Amherst has revealed that the climate changes experienced during the drought followed more complex patterns than previously thought. His team’s discoveries could have important implications for predicting our own society’s future.

Dr Evelyn Cooper | Dr Candice Duncan – Improving Agriculture and Geoscience through Educational Initiatives

Dr Evelyn Cooper | Dr Candice Duncan – Improving Agriculture and Geoscience through Educational Initiatives

Addressing the skills shortage within scientific sectors requires a targeted approach for attracting and retaining students in STEM education. Summer Opportunities in Agricultural Research and the Environment (SOARE), SOARE: Strategic Work in Applied Geosciences (SWAG) and AgDiscovery, three innovative programs at the University of Maryland, provide a gateway for continued education, particularly for students who are traditionally under-represented in scientific fields. Implemented by Dr Evelyn Cooper, the success of the AgDiscovery and SOARE programs at the university has led to the inception of the new SOARE:SWAG program. Co-directed by Dr Candice Duncan, SOARE:SWAG focuses on students within geoscience disciplines.

The European Society for Evolutionary Biology

The European Society for Evolutionary Biology

Founded in 1987, the European Society for Evolutionary Biology (ESEB) is an academic society that brings together over 2000 biologists from Europe and beyond. In this exclusive interview, we speak with Professor Astrid Groot, President of ESEB, who discusses the many ways that the society supports scientists and helps to advance the diverse field of evolutionary biology.