Yiqiao Yin | Tracking Deforestation with Neural Networks

Nov 16, 2022 | Earth and Environment, Engineering and Tech

Forests are key to Earth’s biodiversity and the global ecosystem, hosting 80% of the planet’s plant biomass and two-thirds of all mammal species. However, they are also in decline; each year, around five million hectares of woodland are lost to logging and wildfires. Tracking this loss is essential to controlling and mitigating deforestation, but this requires careful interpretation of satellite imagery. Yiqiao Yin, Kieran Pichai, Benjamin Park and Aaron Bao have developed a model to automatically identify forests from these images. Their new approach is already showing huge promise.

Seeing the Forest for the Trees

A few thousand years ago, forests covered well over half of the world’s habitable land. Since then, human activity has removed a third of that forest – around 2 billion hectares. Most of this deforestation has taken place since 1900, as the demand for lumber and land for agriculture have soared. Now another, more indirect threat to forests is emerging.

As the climate warms due to rising atmospheric carbon, extreme weather events are becoming more common. This includes cold and wet periods, but also intense droughts and blistering heat waves, during which a single spark can ignite and destroy vast areas of woodland.

There are efforts to counter this loss by reforesting wild environments – planting trees and protecting them and their ecosystems. Tracking the progress of these efforts is essential to their long-term success, and accurately measuring the balance of growth and loss of woodland across the globe is necessary to understand and mitigate the effects of deforestation on the economy, local ecosystems, and the global biosphere.

The only practical way to do this tracking is through aerial photography, primarily with satellite images. However, this requires careful interpretation of such images to distinguish a forest from grassland or cropland. Furthermore, this needs to be accurate both in the long-term, to track the rate of global deforestation, and in the short-term, to track a wildfire as it burns. Yiqiao Yin, Kieran Pichai, Benjamin Park and Aaron Bao have developed a new technique to automate this process, offering a fast and accurate way to monitor forests around the world.

Understanding a Branching Model

The team’s innovative approach splits the problem into two stages: first, their algorithm segments the satellite image, identifying which regions are forest and which are not. This produces a black-and-white overlay called a mask, which highlights the forested areas by blacking out the non-forested areas. This output is intuitive and easily understood, but the underlying mechanism is complex.

Secondly, a classification algorithm determines whether the land that was imaged is more than 50% forest. These two approaches work together to quickly and accurately provide a visual overview of forest coverage, and a numerical analysis of the extent of that coverage.

Yin, Pichai and their team use a convolutional neural network to achieve this dual interpretation of forest images. To understand this, we’ll also take a dual approach. First, what is a neural network?

Inspired by the structure of the brain, a neural net consists of ‘neurons’ that can be activated, and connections between those neurons. The neurons are organised into layers, with an input layer for data at one end and an output at the other. Each connection has a strength, called a weight, which determines how large an influence the neuron has on the connected neuron in the next layer.

We train a neural network by providing it with data that’s already been analysed. That way, we can give it feedback if it makes a mistake, so that it can automatically be adjusted to improve its prediction. After many, many repetitions, the network can accurately analyse the training data, and hopefully, similar novel data.

For example, a neural network could be trained to identify handwritten numbers. Each pixel of the scanned image is sent to a neuron in the input layer, and then is processed by intermediate layers. Finally, all being well, a single one of the ten output neurons would activate, signalling that the scanned digit was a 6.

Second, what makes a neural network convolutional? This can be hard to intuitively understand, but the underlying ideas aren’t as difficult as they seem.

Suppose you have an old, grainy, grey-scale image. You might want to blur it slightly, to get rid of the grain. The simplest way to do this is to create a new image where each pixel is defined as the average of the old pixel and its surrounding pixels. For example, a black pixel could be encoded as a 0 (representing 0% brightness), while a white pixel is 100 (100% brightness). If a black pixel is surrounded by 8 white pixels, then in the new image, we’d replace it with a pixel of 88.8% brightness, 800 divided by 9. This would blur out any black specks on the photo.

If this blur was too strong, we could instead use a weighted average by making the surrounding pixels matter less than the central pixel. This is achieved with a kernel, which is a small grid of numbers telling the computer how to weight the average. In the first example, the kernel would be a 3×3 grid, with each cell just containing the number 1, since no pixels are weighted. If we wanted a less harsh blur, we could replace the central cell in the kernel with a 3, meaning the central pixel matters three times more.

By carefully adjusting that kernel, you can process images in many ways. The most important use for Yin, Pichai and their colleagues is edge detection. By using asymmetrical kernels, the output pixel will only have a high value if there’s a large difference on opposite sides of the central pixel. Processing the whole image like this gives an outline of all the edges, borders and boundaries in the images, without any detail inside those borders.

The team’s convolutional neural network combines these two approaches by allowing the neural network to employ convolutional methods. When the neural network is trained using images of forests that have already been analysed, the model can learn to use edge detection to find the boundaries of forested areas and focus on this data. This drastically simplifies the amount of data that the neural net must process, without discarding the salient patterns.

Future Growth

The team plans to continue improving their results by adjusting the model, and training it on a larger and more detailed dataset. They also hope to include further classifications, beyond ‘dense’ and ‘sparsely forested’. With such improvements, the model developed by Yin, Pichai and their colleagues could become a critical tool in managing wildfires by tracking the spread of fire in real-time, which could be used to organise the evacuation of residents or to co-ordinate fire crews and helicopters to tackle the fire in critical regions.

As it stands, the team’s final model is an excellent benchmark. It’s excelled in testing, correctly identifying an image as densely or sparsely forested in more than 80% of tests, and correctly identifying which parts of the image are forested about 80% of the time. This is a drastic increase in model accuracy, allowing us to reliably monitor the health of Earth’s forests in the face of climate change, and track the success of important reforestation programs.






Yiqiao Yin
Princeton, NJ

Yiqiao Yin received an MA from Columbia University in 2019 for his machine learning research, focused on predicting relapse in breast cancer patients. His model achieved an accuracy of 92%, improving on the industry standard by 20–30%. In 2022, Yin began work at LabCorp in New Jersey, where he leads research projects tackling the AI challenges of developing drugs, employing techniques such as convolutional neural networks and long-short term memory.

E: Eagle0504@Gmail.com

W: https://www.yiqiao-yin.com/

Kieran Pichai
Menlo School
Menlo Park, CA

Kieran Pichai is a student at Menlo School, California. He is passionate about solving environmental issues using computational approaches. In addition to his studies, he also works as a team to build machine-learning algorithms and other software. Pichai is also passionate about teaching, and has taught many classes in computer science, mathematics and robotics. In one of his educational projects, he created a computer science curriculum for high-achieving students in under-resourced schools.

E: kieran.pichai@gmail.com

Aaron Bao
The Harker School
San Jose, CA

Aaron Bao is a student at The Harker School, California, where he studies computer science, mathematics and several other subjects. His dedication to his studies has been recognised with the 2022 Harker Love of Learning Award. In addition to computer science and maths, Bao also studies congressional debate, and has attended multiple national debate tournaments. He is a volunteer at the Tahirih Justice Center, which helps immigrant survivors of gender violence.

E: aaron.bao64@gmail.com

Benjamin Park
Menlo School
Menlo Park, CA

Benjamin Park is currently a student at Menlo School, California, who specialises in computer science, physics and mathematics. He is particularly interested in the use of AI as a tool for tackling climate change. In addition to his studies, Park is also a competitive pianist. In both 2017 and 2022, he won first prize in the CAPMT Northern California Piano Competition. He is also an athlete, and regularly competes in golf tournaments.

E: benjamin.park@menloschool.org


Kieran Pichai, Benjamin Park, Aaron Bao, and Yiqiao Yin, Automated Segmentation and Classification of Aerial Forest Imagery, Analytics, 2022, 1(2), 135-143.


We encourage all formats of sharing and republishing of our articles. Whether you want to host on your website, publication or blog, we welcome this. Find out more

Creative Commons Licence (CC BY 4.0)

This work is licensed under a Creative Commons Attribution 4.0 International License. Creative Commons License

What does this mean?

Share: You can copy and redistribute the material in any medium or format

Adapt: You can change, and build upon the material for any purpose, even commercially.

Credit: You must give appropriate credit, provide a link to the license, and indicate if changes were made.




Dr Xu Hannah Zhang | p38γ – It’s More than Just a Kinase

Dr Xu Hannah Zhang | p38γ – It’s More than Just a Kinase

Kinases take energy from adenosine triphosphate molecules to fuel other molecules in performing vital biological processes. Dr Xu Hannah Zhang at City of Hope, Los Angeles, has worked with colleagues to better understand the p38 family of kinases, and in particular, how the p38γ isoform plays a role in cancer. Her work has shown – for the first time – that p38γ is much more than just a kinase, and her recent studies point to new avenues in the search for cutaneous T-cell lymphoma therapeutics.

Professor Alberto Posso – The Neglected Consequences of Child Labour

Professor Alberto Posso – The Neglected Consequences of Child Labour

Child labour is a major social problem that contributes to poor physical health and lower educational achievement. Professor Alberto Posso (Royal Melbourne Institute of Technology) worked with Professor Simon Feeny (Royal Melbourne Institute of Technology), Dr Ahmed Skali (University of Groningen), Professor Amalendu Jyotishi (Azim Premji University), Dr Shyam Nath (Amrita University) and Dr P. K. Viswanathan (Amrita Vishwa Vidyapeetham) to address important gaps in the literature by conducting a large-scale study of children in rural areas of India. This work confirms the hugely negative impact of child labour on psychosocial well-being and opens up important implications for policy, practice and future research.

Dr Daisuke Minakata – Sunshine and Organic Molecules in Water

Dr Daisuke Minakata – Sunshine and Organic Molecules in Water

Organic molecules dissolved in rivers, lakes, seas and oceans are essential to plant and animal life. Some of these molecules are also degraded and enter a complex cycle of carbon, nitrogen and sulphur containing compounds. Surprisingly, scientists currently have a limited understanding of the fate of these molecules. Dr Daisuke Minakata and his colleagues from Michigan Technological University are involved in an ambitious programme to overcome this critical knowledge gap.

Professor Christian Laforsch | Professor Andreas Greiner – Microplastics: Solutions for a Persistent Pollutant

Professor Christian Laforsch | Professor Andreas Greiner – Microplastics: Solutions for a Persistent Pollutant

Plastics have revolutionised human existence. Medicine, technology, agriculture and construction all rely on highly durable plastic materials. However, the enduring legacy of plastics extends far beyond our cities and towns. Everywhere we look, from the deepest parts of the oceans to alpine glaciers, we find tiny fragments called microplastics. Recently, the collaborative research centre, ‘CRC 1357 Microplastic’, at the University of Bayreuth was granted a second funding phase by the German Science Foundation, to continue their intensive research into microplastics. The CRC 1357 team studies the formation and behaviour of microplastics in the environment and their long-term effects on soils, plants, organisms, and ecosystem processes. Through their research, the University of Bayreuth will be able to contribute to ground-breaking recommendations for policy-makers, industry and society.